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GENERATING MULTIVARIATE ORDINAL DATA VIA ENTROPY PRINCIPLES

Yen Lee and David Kaplan

UNIVERSITY OF WISCONSIN - MADISON

When conducting robustness research where the focus of attention is on the impact of non-normality,
the marginal skewness and kurtosis are often used to set the degree of non-normality. Monte Carlo methods
are commonly applied to conduct this type of research by simulating data from distributions with skew-
ness and kurtosis constrained to pre-specified values. Although several procedures have been proposed to
simulate data from distributions with these constraints, no corresponding procedures have been applied
for discrete distributions. In this paper, we present two procedures based on the principles of maximum
entropy and minimum cross-entropy to estimate the multivariate observed ordinal distributions with con-
straints on skewness and kurtosis. For these procedures, the correlation matrix of the observed variables
is not specified but depends on the relationships between the latent response variables. With the estimated
distributions, researchers can study robustness not only focusing on the levels of non-normality but also
on the variations in the distribution shapes. A simulation study demonstrates that these procedures yield
excellent agreement between specified parameters and those of estimated distributions. A robustness study
concerning the effect of distribution shape in the context of confirmatory factor analysis shows that shape
can affect the robust χ2 and robust fit indices, especially when the sample size is small, the data are severely
non-normal, and the fitted model is complex.

Key words: Non-normal data generation, Entropy, Discrete data.

1. Introduction

The normality assumption frequently underlies statistical inferences, but real-world data sets
are commonly far from normally distributed (Blair, 1981; Bradley, 1982; Micceri, 1989; Pearson
& Please, 1975). The effects of violating normality on statistical inferences depend on many
different factors, such as analysis method, the degree of non-normality, model complexity, sample
size. Because of the complexity of the problem, robustness research conducted with Monte Carlo
methods is commonly implemented to understand the effects of non-normality under different
conditions.

Many different approaches have been proposed to generate multivariate non-normal data that
follow a distribution with specific (marginal) skewness, β1 = {β11, β12, . . . , β1m}, (marginal)
kurtosis β2 = {β21, β22, . . . , β2m}, and correlation matrix �, where β1, β2 ∈ R

m , and � ∈ R
mxm

when there are m variables (e.g. Fleishman, 1978; Headrick & Sawilosky, 1999; Headrick, 2010,
Mair, Satorra, & Bentler, 2012; Mattson, 1997; Ruscio & Kaczetow 2008). Most approaches
consist of three steps. First, estimating the univariate marginal distributions with specific β1 and
β2. Second, linking the marginal distributions to a joint multivariate distribution with a specified
�. Third, generating data following the joint multivariate distribution.

Although the procedures described above provide great flexibility, most of them are designed
to generate data only from continuous distributions. Among them, themethod proposed by Ruscio
and Kaczetow (2008) is the only one which is able to generate discrete ordinal data which are
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frequently seen in social and behavior research.However, these procedures have another important
problemother than the lack of ability to generate discrete ordinal data. These procedures all specify
correlations between the observed variables instead of between the underlying latent responses.
In most situations, researchers are interested in the relationships/correlations among underlying
latent responses (represented by �∗) instead of the ones among the observed items (represented
by �). Since the data generated by all the procedures described above specify � but not �∗, they
are not suitable for generating discrete data typically observed in these fields and thus other data
generating procedures are necessary.

1.1. General Discrete Data Generation

In the social and behavioral sciences, observed data are assumed to be generated by using
coarse measurement instruments, in which a set of ordinal items with relatively few categories
are used to measure continuous constructs and thus the observed data are discretely distributed
(Bollen, 1989; Hipp & Bollen, 2003; Micceri, 1989; Weng & Cheng, 2004). In order to reflect
the discreteness generated through this process, a three-step data generation approach is typically
applied.

To generate data following an m-dimensional discrete k = {k1, k2, . . . , km} categories mul-
tivariate distribution, p, the first step is to select an m-dimensional continuous multivariate dis-
tribution, p∗, which represents the joint distribution of the underlying variables, y∗ with specific
parameters, such as a specific correlation matrix, �∗ which obeys a structure of the relationships
among y∗. The p∗ and p are referred to as the latent response and observed ordinal responses distri-
butions, respectively, following Muthén (1983) and Muthén (1984). The marginal latent response
distributions of the marginal latent variables, y∗

j , are referred to as p∗
j , where j = 1, 2, . . . ,m.

The second step is to select a threshold set τ = {τ1, τ2, . . . , τm} of p∗. The τ j ={
τ0 j , . . . , τk j j

}
represents the threshold set of the p∗

j . The τ determines the relationship between
the y∗ and the observed variables, y. For the marginal latent response variable y∗

j ’s and observed
variables y j ’s, the relationship is formalized as

y j = i j , if τ(i j−1) j < y∗
j ≤ τi j j , (1)

where i j = 1, 2, . . . , k j is the scores of the y j . τ0 j ≡ −∞ and τk j j ≡ ∞. The probability of
y j = i j is referred to as pi j j ≡ Fj (τi j j ) − Fj (τ(i j−1) j ), where Fj is the marginal cumulative
density function (CDF) of y∗

j , and the Fj (τi j j ) is the probability that y∗
j ≤ τi j j .

Through the relationship in Eq. 1, τ j determines each marginal probability mass function
(PMF), p j . Furthermore, τ determines the joint PMF, p, of y when p∗ with all parameters
specified is assumed. Therefore, the last step, to generate data following p, is commonly achieved
by generating y∗ following p∗, then transforming y∗ to y according to Eq. (1).

The second step which decides p when p∗ is specified is the main focus of this paper. When
p∗ is specified, p is fully determined by the selection of the τ and vice versa. Therefore, estimating
p is equivalent to estimating τ in this condition.

There are many different possible candidates p∗’s and τ ’s in the literature. The most common
p∗ is the standard multivariate normal distribution (MVN). Many researchers have chosen τ ’s to
yield specific p’s to investigate the effect of non-normality according to specific response patterns
(e.g. Ethington, 1987; Muthén & Kaplan, 1985; 1992; Yang-Wallentin, Joreskog, & Luo, 2010)
or to yield p’s having specific β1’s (e.g. Babakus, Ferguson, & Joreskog, 1987; Olsson, 1979). In
recent years, researchers have started to select other distributions for p∗’s in robustness research.
For example, Hipp and Bollen (2003) apply distributions estimated via the power method, and
Flora and Curran (2004) apply the generalized lambda distributions combined with specific τ ’s
to generate specific p’s.
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From the previous paragraph, we see that researchers frequently select the p by selecting
the marginal p j ’s, according to substantive considerations in robustness research. For example,
Muthén and Kaplan (1985) selected the p j ’s which are commonly encountered in the social and
behavioral sciences when investigating the impact of ordinal data in exploratory factor analysis,
a commonly applied method in the social and behavioral sciences. However, most conclusions
from robustness research are presented in terms of β1’s and β2’s instead of p. We argue that this
is a mismatch between the research conclusions and the manipulated factors since β1 and β2 are
only part of the characteristics of p. There is no one-to-one relationship between the combination
of β1 j and β2 j and p j and thus p. Therefore, the conclusions obtained regarding β1 and β2 might
be a special case but not a general rule.

1.2. Relationship Between the Specific β1 j ’s and β2 j ’s and p’s

To eliminate the mismatch, we focus on estimating p with specific β1 and β2 which could be
considered as the information we have about p. In order to do so, we need to discuss the properties
of β1, β2 and their relationship with p. When p is specified, the β1 and β2 are specified. However,
the inverse relationship is not true. The β1 j and β2 j are nonlinear expressions constructed from
the marginal first four moments and could be the same if p’s have the same first four moments
but different higher moments.

When the number of categories, k j = 5, the marginal first four moments of the p j and
p j have a one-to-one relationship. When k j < 5, the marginal first four moments of the p j are
determinedwhen fewermoments are determined. For instance, the first fourmoments of Bernoulli
distributions (k j = 2) are determined if any of the odd moments is specified. Therefore, β1 j is
sufficient to determine the p j of Bernoulli distributions (Wilkins, 1944). Specifying both β1 j
and β2 j is sufficient to determine the p j when k j = 3 in most cases (We will discuss this in
“Appendix A”). Therefore, β1 j and β2 j are not sufficient to determine the p j ’s when k j > 3 in
most conditions. Thus, there could be an infinite number of p j ’s which have the same β1 j and
β2 j when k j > 3. This implies that there are an infinite number of p’s with the same β1 and β2
even when the p∗’s are the same.

A consequence of an infinite number of p’s with the same β1 and β2 is that it would impede
generalizing the conclusions obtained from one distribution to all others. This problem could be
partly solved if multiple p’s having the same β1 and β2 could be analyzed when conductingMonte
Carlo research. Then, the p’s could be selected according to either (a) probability theory or (b)
researchers’ knowledge of the ideal shape of p. However, a review of the extant literature indicates
there is no method that can generate p’s systematically with a specific β1 and β2 combination
according to either (a) or (b). Therefore, we propose two procedures that can estimate p’s with
the specific β1 and β2 based on two principles wherein researchers can obtain greater control and
flexibility, and the results of Monte Carlo research could be more informative. The procedures
we propose rest on the concepts of maximum entropy (MaxEnt) and minimum cross-entropy
(MinxEnt) principle. The details of our procedures and the notation used in this paper are discussed
in the following sections.

2. Notation

The general notation and the focused problem in this paper are defined in this section. Fol-
lowing the notation in the previous sections, p∗ is used to indicate the m-dimensional continuous
latent response distribution of y∗. Its probability density function (PDF) and CDF are denoted as
f (y∗

1 , . . . y
∗
m) and F(y∗

1 , . . . y
∗
m), respectively. The p∗

j is the distribution of y
∗
j . Its PDF is denoted

as f j (y∗
j ) and CDF is denoted as Fj (y∗

j ), where j is from 1 to m.
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Similarly, p is the m-dimensional observed ordinal distribution of y. The p j is the marginal
distribution of y j . The p j = {

p1 j , . . . , pk j j
}
indicates the marginal probability mass function

(PMF). The pi j j is the probability of y j = i j , where i j is from 1 to k j , the number of categories
of y j .

The CDF, Fj (τi j j ) denotes the probability that y∗
j ≤ τi j j . Thus, pi j j also equals

Fj (τi j j ) − Fj (τ(i j−1) j ), which is the same as the probability of τ(i j−1) j < y∗
j ≤ τi j j . The

τ j = {
τ0 j , . . . , τk j j

}
is the threshold set of p j and τ0 j ≤ τ1 j ≤ τ2 j . . . ≤ τ(k j−1) j ≤ τk j j .

The joint probability distribution p = {
pi1i2,...,im

}
; the i j is from 1 to k j and j is from 1 tom.

The pi1i2,...,im is the probability of y1 = i1, y2 = i2, . . . , ym = im . It also equals the probability
of τ(i1−1)1 < y∗

1 ≤ τi11, τ(i2−1)2 < y∗
2 ≤ τi22, . . . , τ(im−1)m < y∗

m ≤ τimm . The pi1i2,...,im has to
satisfy the normalizing constraint:

1 =
k1∑

i1=1

. . .

k j∑

i j=1

. . .

km∑

im=1

(pi1i2...i j−1i j i j+1...im ) (2)

The pi j j of y j is calculated by the following formula.

pi j j =
k1∑

i1=1

. . .

k j−1∑

i j−1=1

k j+1∑

i j+1=1

. . .

km∑

im=1

(pi1i2...i j−1i j i j+1...im ) (3)

The target constraints of the β1 and β2 of p are definedmarginally in p as follows (Ramachan-
dran & Tsokos 2009):

β1 j = E(y j − μ j )
3

σ 3
j

(4)

β2 j = E(y j − μ j )
4

σ 4
j

− 3 (5)

where μ j and σ j are the mean and standard deviation of p j . Eqs. (4) and (5) can be transformed
into the following expressions for discrete variables (Lee, n.d.):

β1 j =

(
∑k j

i j=1 i
3
j pi j j − 3

∑k j
i j=1 i

2
j pi j j

∑k j
i j=1 i j pi j j + 2

(∑k j
i j=1 i j pi j j

)3)

(
∑k j

i j=1 i
2
j pi j j −

(∑k j
i j−1 i j pi j j

)2)3/2 (6)

β2 j =

(
∑k j

i j=1 i
4
j pi j j − 4

∑k j
i j=1 i

3
j pi j j

∑k j
i j=1 i j pi j j + 6

∑k j
i j=1 i

2
j pi j j

(∑k j
i j=1 i j pi j j

)2 − 3
(∑k j

i j=1 i j pi j j
)4)

(
∑k j

i j=1 i
2
j pi j j −

(∑k j
i j=1 i j pi j j

)2)2 − 3

(7)

As mentioned earlier, there are an infinite number of p’s which can satisfy Eqs. (6) and (7).
The details of the MaxEnt and MinxEnt procedures which we propose to select one of them are
introduced in the following sections.
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3. The Maximum Entropy (MaxEnt) Procedure

Shannon (1948) proposed the idea of information entropy (hereafter, entropy), H(p), to quan-
tify the uncertainty of probability distributions. For a one-dimensional or a marginal distribution
p j , Shannon’s entropy is defined as

Hj (p j ) ≡ −
k j∑

i j=1

pi j j ln(pi j j ) (8)

Note that when pi j j = 0, then pi j j ln(pi j j ) is defined as zero in Eq. (8). The term ln(pi j j )
assures that pi j j ≥ 0 and therefore satisfies the inequality τ0 j ≤ τ1 j ≤ τ2 j …≤ τ(k j−1) j ≤ τk j j
simultaneously.

Equation (8) can be extended to measure the multivariate distribution p’s by defining

H(p) ≡ −
k1∑

i1=1

. . .

km∑

im=1

pi1...im ln(pi1...im ) (9)

The entropy H(p) reflects the amount of uncertainty in p and decreases when more informa-
tion about p is known. The MaxEnt principle suggests choosing the MaxEnt distribution; the p
that has maximum H(p) among all the distributions subject to the same information/constraints.
By choosing the MaxEnt distribution, we choose the most prudent distribution since it is the one
estimated with the least information and having the greatest uncertainty (Golan, Judge, & Miller,
1997; Jaynes, 1957; Kapur & Kesavan, 1992). In addition, the MaxEnt distribution is the most
frequently appearing and thus the most typical one in the probability distribution space of the
distributions satisfying the constraints (Golan et al., 1997; Jaynes, 1982; Wu, 1997; Zellner &
Highfield, 1988); moreover, the distribution tends to be flat (Jaynes 1957; 1982). Zero proba-
bilities are avoided, which is consistent with the expectation of p’s when we only have limited
information. These characteristics make theMaxEnt principle a preferred guide to choose p when
only β1 and β2 are specified.

In this paper, two estimation methods following the MaxEnt principle are proposed. The first
method is themarginal approachwhich estimates the p1 to pm individually and the secondmethod
is a global approach which estimates the τ when p∗ with all parameters are specified is assumed.

3.1. The Marginal Approach

For the marginal approach, we estimate p j when β1 j and β2 j are specified, and thus the
problem we are solving is defined as follows:

argmax
p j

Hj (p j ), (10)

subjects to the constraints

β1 j = c1 j , β2 j = c2 j ,

k j∑

i j=1

pi j j = 1 (11)

for j = 1, 2, . . . ,m. The c1 j and c2 j refer to the pre-specified β1 j and β2 j values. We solve
the problem l times if there are l different combinations of

{
β1 j , β2 j , k j

}
. For example, if we

want to estimate a 5 dimensional p whose β1 = {0, 0, 0,− 1,− 1}, β2 = {0, 0, 0, 3, 3} and
k = {5, 5, 5, 6, 6}, we only need to solve the problem 2 times since there are only two different{
β1 j , β2 j , k j

}
combinations: {0, 0, 5} and {− 1, 3, 6}.
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The partial derivatives of Hj (p j ), β1 j , and β2 j would be implemented in the optimization
and are derived as follows:

∂Hj (p j )

∂pi j j
= −(1 + ln pi j j ) (12)

∂β1 j (p j )

∂pi j j
=

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣i3j − 3i2j

k j∑

i j=1

i j pi j j − 3i j

k j∑

i j=1

i2j pi j j + 6i j

⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

2
⎤

⎥
⎦

×
⎡

⎢
⎣

k j∑

i j=1

i2j pi j j −
⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

2
⎤

⎥
⎦

− 3
2

⎫
⎪⎪⎬

⎪⎪⎭

−

⎧
⎪⎪⎨

⎪⎪⎩

3

2

⎡

⎢
⎣

k j∑

i j=1

i2j pi j j −
⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

2
⎤

⎥
⎦

− 5
2 ⎡

⎣i2j − 2i j

⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

⎤

⎦

⎡

⎢
⎣

k j∑

i j=1

i3j pi j j − 3

⎛

⎝
k j∑

i j=1

i2j pi j j

k j∑

i j=1

i j pi j j

⎞

⎠ + 2

⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

3
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(13)

∂β2 j (p j )

∂pi j j
=

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣i4j − 4i3j

k j∑

i j=1

i j pi j j − 4i j

k j∑

i j=1

i3j pi j j + 6i2j

⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

2

+ 12i j

⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

⎛

⎝
k j∑

i j=1

i2j pi j j

⎞

⎠ − 12i j

⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

3
⎤

⎥
⎦

×
⎡

⎢
⎣

k j∑

i j=1

i2j pi j j −
⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

2
⎤

⎥
⎦

−2⎫
⎪⎬

⎪⎭

−

⎧
⎪⎨

⎪⎩
2

⎡

⎢
⎣

k j∑

i j=1

i2j pi j j −
⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

2
⎤

⎥
⎦

−3⎡

⎣i2j − 2i j

⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

⎤

⎦

×
⎛

⎜
⎝

k j∑

i j=1

i4j pi j j − 4

k j∑

i j=1

i3j pi j j

k j∑

i j=1

i j pi j j + 6

k j∑

i j=1

i2j pi j j

⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

2

− 3

⎛

⎝
k j∑

i j=1

i j pi j j

⎞

⎠

4
⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
(14)

After p j is estimated, τ j is obtained by applying the inverse CDF function of the p∗
j . When

m τ j ’s are obtained, the τ is known and we can further categorize the p∗ to yield p. When p is
determined, its properties, such as �, are decided.



YEN LEE AND DAVID KAPLAN

3.2. The Global Approach

In the global approach,we focus on estimate τ instead of pi1...im ’swhenβ1 andβ2 are specified
to simplify the problem. Estimating τ reduces the number of unknowns we need to estimate for
optimization. If we want to optimize Eq. (9) directly, we have to estimate

∏m
j=1 k j unknown

pi1...im ’s in p. The number is very large whenm and k are large, and thus makes the problem hard
to be solved. In contrast, only

∑m
j=1

(
k j − 1

)
unknown elements in τ need to be estimated. The

difference between the number of unknowns shows that constraints which make pi1...im equals
the probability of τ(i1−1)1 < y∗

1 ≤ τi11, τ(i2−1)2 < y∗
2 ≤ τi22, . . . , τ(im−1)m < y∗

m ≤ τimm are
necessary to be imposed when solving pi1...im ’s. Without imposing the constraints, we will not be
able to obtain a p whose relationship with p∗ is defined by τ . However, adding constraints usually
makes optimization problem harder to solve. Therefore, we estimate τ when p∗ is assumed in the
globalMaxEnt approach. In this approach, the number of unknowns to be solved is relatively small
and the relationships between p and p∗ defined by τ can be guaranteed without any constraints
other than Eqs. (6) and (7).

The problem we are solving here is defined as follows:

argmax
τ

H(τ ) (15)

subject to the constraints

β1 j = c1 j , β2 j = c2 j ,
k1∑

i1=1

. . .

km∑

im=1

pi1...im = 1, (16)

τ0 j ≤ τ1 j ≤ · · · ≤ τk j j ,where j is from 1 to m (17)

The H(τ ) is converted from H(p) and is defined as follows:

H(τ ) = −
k1∑

i1=1

. . .

km∑

im=1

∫ τi11

τ(i1−1)1

. . .

∫ τimm

τ(im−1)m

f (y∗
1 , . . . y

∗
m)dy∗

m . . . dy∗
1

× ln

(∫ τi11

τ(i1−1)1

. . .

∫ τimm

τ(im−1)m

f (y∗
1 , . . . y

∗
m)dy∗

m . . . dy∗
1

) (18)

where f (y∗
1 , . . . y

∗
m) is the joint PDFof y∗ and pi1...im = ∫ τi11

τ(i1−1)1
. . .

∫ τimm
τ(im−1)m

f (y∗
1 , . . . y

∗
m)dy∗

m . . .

dy∗
1
The partial derivative of H(τ ) is derived as follows:

∂H(τ )

∂τi j j
= −

k1∑

i1=1

. . .

k( j−1)∑

i( j−1)

k( j+1)∑

i( j+1)

. . .

km∑

im=1

∫ τi11

τ(i1−1)1

. . .

∫ τi( j−1) ( j−1)

τ(i( j−1)−1)( j−1)

∫ τi( j+1) ( j+1)

τ(i( j+1)−1)( j+1)
. . .

∫ τimm

τ(im−1)m

× f (y∗
1 , . . . , y

∗
j−1, τi j , y

∗
j+1, . . . , y

∗
m)dy∗

m . . . dy∗
j+1dy

∗
j−1 . . . dy∗

1

× ln

⎛

⎝

∫ τi11
τ(i1−1)1

. . .
∫ τi j j
τ(i j−1) j . . .

∫ τimm
τ(im−1)m

f (y∗
1 , . . . , y

∗
j , . . . , y

∗
m)dy∗

m . . . dy∗
j . . . dy∗

1
∫ τi11
τ(i1−1)1

. . .
∫ τ(i j+1) j
τi j j

. . .
∫ τimm
τ(im−1)m

f (y∗
1 , . . . , y

∗
j , . . . , y

∗
m)dy∗

m . . . dy∗
j . . . dy∗

1

⎞

⎠

(19)
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The β1 and β2 constraints of Eqs. (6) and (7) could be shown as functions of τ by substituting

pi j j by
∫ τi j j
τ(i j−1) j y

∗
j dy j . The corresponding partial derivatives are as follows:

∂β1 j (τ )

∂τi j j
= f j (τi j )

⎧
⎨

⎩

⎡

⎣(i3j − i3j+1) − 3(i2j − i2j+1)

k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

− 3(i j − i j+1)

k j∑

i j=1

i2j

∫ τi j

τ(i j−1) j

y∗
j dy j

+ 6(i j − i j+1)

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

2
⎤

⎥
⎦

×
⎡

⎢
⎣

k j∑

i j=1

i2j

∫ τi j

τ(i j−1) j

y∗
j dy j −

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

2
⎤

⎥
⎦

− 3
2

− 3

2

⎡

⎢
⎣

k j∑

i j=1

i2j

∫ τi j

τ(i j−1) j

y∗
j dy j −

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

2
⎤

⎥
⎦

− 5
2

×
⎡

⎣(i2j − i2j+1) − 2(i j − i j+1)

k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎤

⎦

×
⎡

⎣
k j∑

i j=1

i3j

∫ τi j

τ(i j−1) j

y∗
j dy j − 3

⎛

⎝
k j∑

i j=1

i2j

∫ τi j

τ(i j−1) j

y∗
j dy j

k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

+ 2

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

3
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(20)

∂β2 j (τ )

∂τi j j
= f j (τi j )

⎧
⎨

⎩

⎡

⎣(i4j − i4j+1) − 4(i3j − i3j+1)

k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

− 4(i j − i j+1)

k j∑

i j=1

i3j

∫ τi j

τ(i j−1) j

y∗
j dy j + 6(i2j − i2j+1)

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

2

+ 12(i j − i j+1)

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

⎛

⎝
k j∑

i j=1

i2j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

− 12(i j − i j+1)

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

3
⎤

⎥
⎦
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×
⎡

⎢
⎣

k j∑

i j=1

i2j

∫ τi j

τ(i j−1) j

y∗
j dy j −

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

2
⎤

⎥
⎦

−2

− 2

⎡

⎢
⎣

k j∑

i j=1

i2j

∫ τi j

τ(i j−1) j

y∗
j dy j −

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

2
⎤

⎥
⎦

−3

×
⎡

⎣(i2j − i j+1) − 2(i j − i j+1)

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

⎤

⎦

×
⎡

⎣
k j∑

i j=1

i4j

∫ τi j

τ(i j−1) j

y∗
j dy j − 4

k j∑

i j=1

i3j

∫ τi j

τ(i j−1) j

y∗
j dy j

k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

+ 6

k j∑

i j=1

i2j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

2

− 3

⎛

⎝
k j∑

i j=1

i j

∫ τi j

τ(i j−1) j

y∗
j dy j

⎞

⎠

4
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(21)

When optimizing, Eq. (18) is set as −∞ when Eq. (17) is violated. After τ is estimated, p is
determined by applying the CDF function of p∗. Once p is determined, its properties, such as �,
are known. The data are generated by simulating y∗ then transforming them according to Eq. (1).

It is important to note that the entropy of multivariate distributions, H(p), is a joint distri-
butional measurement of uncertainty. Therefore, we expect that our global approach would be
able to estimate the MaxEnt distribution, p, precisely. In contrast, our marginal approach which
estimates p j instead of p, in turn, would accelerate computational speed but will sacrifice the
property of maximum entropy. The difference between H(τ ) and H(p j ), the entropy of p esti-
mated by themarginalMaxEnt approach, is important when choosing the approach. To understand
the difference, a numerical evaluation is conducted and discussed later.

4. The Minimum Cross-Entropy (MinxEnt) Procedure

When conducting robustness research situated in the social and behavioral sciences, most
researchers have, in fact, the ideal distributional shapes which they wish to investigate, see e.g.
Muthén andKaplan (1985, in the context of factor analysis). Itwould be valuable if this information
could be used to estimate p’s with specific β1 and β2.When the ideal shapes are able to formulated
as PMF’s of ideal distributions, which we denote as, q, the Kullback–Leibler (1951) cross-entropy
principle (MinxEnt) could be implemented to estimate the target p. The cross-entropy, D(p : q),
is a measure of the divergence between p and q.

The Kullback–Leibler’s cross-entropy in dimension j is defined as:

D(p j ; q j ) ≡
k j∑

i j=1

pi j j ln
( pi j j
qi j j

)
(22)
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where the p j and q j are the target and the ideal marginal PMF of the y j , respectively. The

q j = {
q1 j , . . . , qk j j

}
. The term ln(

pi j j
qi j j

) assures that pi j j ≥ 0 and satisfies the inequality τ0 j ≤
τ1 j ≤ τ2 j . . . ≤ τk j j . As with the MaxEnt procedure, (pi j j ) ln(pi j j/qi j j ) = 0 when pi j j = 0.
In this formula, every qi j j is assumed to be greater than zero; otherwise, it would be the same as
setting the q j with a fewer number of categories.

Note that D(p j : q j ) decreases when the p j is similar to the q j and it decreases to zero if
and only if p j = q j . When setting the ideal distribution as q j , the p j which is closest to the
q j and also satisfies the constraints of the β1 j and β2 j are estimated by following the MinxEnt
principle. The MinxEnt principle suggests choosing the p that has the minimum D(p j : q j ) from
the distribution space subject to the constraints. The MinxEnt procedure estimates the p j instead
of p since it is more common that the researchers’ ideal distributions are marginal rather than
joint.

When a q j is specified, we estimate p j by solving the problem defined as follows:

argmin
p j

D(p j : q j ) (23)

subjects to Eq. (11).
The partial derivative of D(p j : q j ) is derived as:

∂D(p j : q j )

∂pi j j
= ln pi j j − ln qi j j + 1. (24)

The partial derivatives of the constraints are the same as Eqs. (13) and (14). After pi j j is
estimated, τi j j can be obtained by applying the inverse CDF of the y

∗
j . The τ can further categorize

p∗ to get p if the PDF of y∗ is known. Once p is determined, its properties, such as�, are decided.
When we compare Eqs. (8) and (10) with Eqs. (22) and (23), we could see that the MaxEnt

procedure is a special case of theMinxEnt procedurewhenwe set uniform distribution as q j . Since
the setting of q j represents our preference of the shape of p j , this setting implies no preference
of any category of the target PMF, and thus it also reflects the lack of information about p j .

5. Computational Software: An R package

AnR package (RCore Team, 2014) is provided to estimate p’s and to generate data according
to the MaxEnt and MinxEnt procedures. As there is no analytical solution to estimate p’s or τ ’s
for both procedures, a numerical optimization algorithm is necessary. Specifically, we solve the
optimization problems via an augmented Lagrangian minimization algorithm (ALM) using the
package “alabama” (Varadhan, 2015). The objective function of ALM is a combination of the
Lagrangian function and the quadratic penalty function of the constraints. The quadratic penalty
function largely preserves smoothness and thus facilitates optimization.

The ALM can be separated into inner iterative loops and outer iterative loops. The inner
iterative loop optimizes the combination of the Lagrangian function and the quadratic penalty
function with specified weight. The outer iterative loop increases the weight in each iteration.
The details of this method can be found in Madsen, Nielsen, and Tingleff (2004) and in Nocedal
and Wright (2006). The optimization process of inner loop stops when the relative tolerance (the
difference between the objective function values of two consecutive iterations) is smaller than
10−8, and the outer loop stops when the relative tolerance is smaller than 10−7. The default
starting values we applied are the pi j j (marginal MaxEnt procedure and MinxEnt procedure)
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or τi j j (global MaxEnt procedure) of the uniform distribution, which is the MaxEnt distribution
subject only to the normalizing constraint. It is worth noting that the feasible regions of the two
optimization problems are disjoint due to the nonlinear constraints. The disjoint nature makes
finding the global optimal solution a difficult task and heavily depends on the starting values.
Therefore, multiple starting values are preferred when conducting the purposed procedures. In
our package, multiple random starting points sets can be used to find the optimal solution.

In our global MaxEnt approach, the p∗ is assumed to be the MVN. Its PDF and CDF are
evaluated using the package “mvtnorm” (Genz et al., 2015) to calculate the Eq. (18) to Eq. (21).
The “mvtnorm” package is developed especially for evaluating the CDF and PDF of the MVN. It
implements the algorithm which evaluates several univariate CDF of the normal distribution
instead of evaluating the high dimensional CDF. This transformation not only preserves the
accuracy but also increases the efficiency (Genz & Bretz, 2002). The details of this algorithm
could be seen in Genz (1992). Our R program is attached as an appendix, and the accuracy of the
package is described in the next section.

6. Evaluation of the Procedures

In this section, we evaluate the accuracy of our marginal, global MaxEnt and MinxEnt pro-
cedures by the differences between the β1 and β2 of the estimated p and their specified values.
The difference of H(p) optimized via the marginal MaxEnt approach, H(p j ), and the one via
global MaxEnt approach, H(τ ) was also compared.

As we mentioned, we expect that the H(p j ) will be smaller than H(τ ). We further expect
that the deviance increases when the dependence increases, as in Kapur and Kesavan (1992) who
showed that H(p) ≤ ∑m

j=1 Hj (p j ). The equality holds only when p j ’s are independent and the
deviance increases when the dependence increases. Therefore, the deviance amounts in different
dependence conditions are evaluated to understand the applicability of the marginal MaxEnt
procedure.

When the β1 and β2 are set the same across marginals, six bivariate five categories p′s with
different β1 and β2 combinations (β1, β2) = {(0, 0), (0, 3), (− 2, 3), (0, 10), (3, 10), (0,− 1)}
are estimated by our marginal, global MaxEnt and MinxEnt procedures. We consider β2 = 10,
β2 = 3 and β2 = 0 or − 1 as severe, moderate, and trivial non-normality. The non-normality
level increases when absolute value of β1 increases within the same β2 value. The latent response
distribution, p∗, is set as MVN with μ = 0, σ = 1 when correlation varies from 0 to 0.9
in increments of 0.1. The varying degrees of correlation represent dependence in MVN which
affects the dependence in p.

For the MinxEnt procedure, we specify seven different q j ’s to evaluate the performance of
the MinxEnt procedure. The specified q j ’s are bimodal (Prior 2), truncated (Prior 3), unimodal
symmetric with different leptokurtotic levels (Prior 4 and Prior 5) and unimodal left skewed with
different skewed and leptokurtotic levels (Prior 6 to Prior 8). The specified q j ’s are shown in the
ideal distribution part in Table 1.

The results show that the β1 and β2 of the p estimated by our marginal, global MaxEnt and
MinxEnt procedures are consistent with the specified values with absolute differences smaller
than 10−7. The deviances between H(τ ) and H(p j ) are consistent with our expectation, which
means that the H(τ ) is consistently greater than H(p j ) except when correlation is 0. However, all
the differences are under 0.1% of H(τ ) even when the correlation is as high as .90. This implies
that the marginal approach is quite robust and accurate under the conditions we specified.

In conclusion, all of our approaches are quite accurate under the condition we specified (p∗
is bivariate normal distributed and p is a bivariate distribution with five categories). Regarding
choosing betweenmarginal and globalMaxEnt procedures, we recommend applying themarginal
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Table 1.
Five categories p j ’s of six combinations of skewness and kurtosis with eight different ideal distributions (q j ).

p j p1 j p2 j p3 j p4 j p5 j

Ideal distribution (q j )
Prior1 20.00 20.00 20.00 20.00 20.00
Prior2 42.50 5.00 5.00 5.00 42.50
Prior3 5.00 42.50 5.00 42.50 5.00
Prior4 5.00 20.00 50.00 20.00 5.00
Prior5 5.00 7.50 75.00 7.50 5.00
Prior6 5.00 10.00 20.00 30.00 35.00
Prior7 2.50 5.00 15.00 30.00 47.50
Prior8 5.00 5.00 5.00 10.00 75.00

p j p1 j p2 j p3 j p4 j p5 j p1 j p2 j p3 j p4 j p5 j

Estimated distribution (p j )
β1, β2 0,0 0,3

Prior1 8.41 16.54 50.09 16.54 8.41 3.64 9.14 74.45 9.14 3.64
Prior2 12.47 9.08 56.89 9.08 12.47 0.23 0.00 0.01 67.81 31.96
Prior3 5.38 20.66 47.92 20.66 5.38 0.06 0.24 6.11 78.73 14.87
Prior4 5.21 20.83 47.92 20.83 5.21 2.60 10.42 73.96 10.42 2.60
Prior5 11.98 10.06 55.91 10.06 11.98 4.76 7.33 75.81 7.33 4.76
Prior6 1.72 4.84 47.47 30.03 15.93 0.20 0.00 2.36 71.95 25.49
Prior7 0.05 0.00 3.64 62.42 33.88 0.22 0.00 0.94 69.61 29.23
Prior8 0.09 0.00 0.03 57.30 42.57 0.23 0.00 0.01 67.81 31.96

β1, β2 − 2,3 0,10

Prior1 7.39 2.11 3.28 21.73 65.49 1.56 4.39 88.11 4.39 1.56
Prior2 6.29 1.58 8.28 12.19 71.65 0.31 0.00 0.01 82.39 17.29
Prior3 4.84 7.95 6.93 78.93 1.36 11.14 86.21 2.43 0.04 0.18
Prior4 5.98 14.27 79.58 0.17 0.00 1.20 4.81 87.98 4.81 1.20
Prior5 9.21 7.31 82.27 1.21 0.00 1.80 4.04 88.32 4.04 1.80
Prior6 6.52 3.02 3.65 19.61 67.20 0.28 0.04 0.48 83.32 15.88
Prior7 5.96 3.45 4.24 17.82 68.54 0.30 0.00 0.31 82.84 16.55
Prior8 3.91 4.66 6.49 12.03 72.91 0.31 0.00 0.07 82.47 17.16

β1, β2 − 3,10 0,− 1

Prior1 3.11 0.31 1.42 22.17 72.99 15.23 20.32 28.90 20.32 15.23
Prior2 1.90 0.33 4.83 13.46 79.48 20.41 10.10 38.97 10.11 20.41
Prior3 2.58 2.80 5.72 86.54 2.36 8.23 30.81 21.91 30.81 8.23
Prior4 2.63 7.40 89.26 0.70 0.00 0.47 27.84 43.38 27.84 0.47
Prior5 3.93 4.83 89.99 1.25 0.00 20.30 10.33 38.74 10.33 20.30
Prior6 2.87 0.49 1.73 20.96 73.95 0.91 15.73 36.12 23.63 23.61
Prior7 2.60 0.63 2.18 19.49 75.10 0.12 1.99 35.60 35.86 26.43
Prior8 1.31 1.09 3.99 13.45 80.16 6.73 19.34 35.68 12.56 25.69

The pi j j indicate the probability of y j = i j .
The numbers shown are estimated to the sixth decimal place but rounded to the second decimal place.
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approach especially when m and k are large and p∗ is assumed to be MVN. In this condition,
our marginal approach leads to trivial deviances even when y∗

j ’s are highly dependent but is
significantly faster than the global approach.

7. Numerical Study

7.1. Design

A robustness study was conducted in order to (a) evaluate the quality of data generated from
the proposed procedures, and to (b) illustrate the application of our procedures. Specifically,
confirmatory factor analysis (CFA) was chosen as the illustrative model insofar as it has been the
subject of most robustness research in the social and behavioral sciences. In this study, the p∗’s
were the MVN. The five categories p’s were evaluated because they are commonly encountered
in social and behavioral science research and are well studied (Flora & Curran, 2004; Muthén &
Kaplan, 1985).

The p’s were estimated under four experimental conditions: (a) model complexity, (b) level
of non-normality, (c) distribution shape, and (d) sample size. Four models were evaluated to
investigate the model complexity condition. Model 1 was a 1-factor model measured with five
indicators; Model 2 was a 1-factor model measured with ten indicators; Model 3 was a 2-factor
model, with each factor measured by five indicators; and Model 4 was a 2-factor model with
each factor measured by ten indicators. The factor loadings were 0.7 across all models, no error
correlations were specified, and the factor correlation was 0.6 if applicable. According to the
setting, r∗’s (the elements of �∗) have only two different values: 0.49, for items load on the same
factor, and 0.294, for items load on different factors.

The degree of non-normality and q j were specified as in the evaluation of the procedures
section. The specified (β1, β2) combinations were selected to allow examination of their separate
effects. The estimated p j ’s of different β1 j , β2 j and q j are shown in Table 1 in which the dis-
tributions estimated with Prior 1 are the MaxEnt distributions and the ones estimated with Prior
2 to Prior 8 are the MinxEnt distributions. The marginal approach described earlier was used to
estimate the MaxEnt distributions.

Random samples of five different sizes: 100, 200, 500, 1000 and 2000 were drawn from each
estimated p. This study had the following experimental conditions: four models × six β1 and
β2 combinations × eight distribution shapes × five sample sizes= 960 independent cells. Data
were generated and fitted 1000 times in each cell of the design.

Two analyses were conducted. In Analysis I, we focused on evaluating the parameters of
the estimated p’s. The precision of β1 and β2 of p were examined first to confirm the accuracy
of our procedures. After accuracy was confirmed, the impact of the distribution shape on � was
evaluated by deviance (D) and relative deviance (RD). The D and RD are defined as r − r∗ and
r−r∗
|r∗| × 100%, where r and r∗ denote the element in � and �∗, respectively.

In addition, we analyzed the characteristics of the sampling distributions of β̂1, β̂2 and r̂ to
understand the data generated under different conditions by computing the mean and standard
deviation (SD) of bias (B), θ̂ − θ , and relative bias (RB), θ̂−θ

|θ | × 100%. When θ was 0, the RB

was defined as θ̂ × 100%. The θ usually denoted the parameters of p, and the θ̂ denoted the
corresponding estimates. However, we compared ̂� with �∗ instead of � since the researcher
is interested in the relationships between the underlying constructs. Consistent with previous
simulation studies conducted by Flora and Curran (2004), the absolute mean RB less or equal to
5% indicated trivial bias; the one between 5 and 10% indicated moderate bias; and the one greater
than 10% indicated substantial bias.
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In Analysis II, the data were fitted with the correctly specified CFA models to examine the
effects of the four design conditions on the fit statistics. All of the models were fitted with the
R package lavaan (Rosseel, 2012) with diagonal weighted least squares with mean and variance
adjusted test statistic estimation (WLSMV). The estimator corrects the effects of non-normality
and discreteness on the χ2 values and the fit indices (Asparouhov &Muthén, 2010) and is widely
recommended when analyzing non-normal ordinal data (DiStefano & Morgan, 2014; Flora &
Curran, 2004). The RB and the empirical Type I error rate (rejection rate when nominal α-level
was set as .05, RR) of the robust χ2 statistic were evaluated. The robust CFI, TLI , NFI, and
RMSEA (rCFI, rTLI, rNFI and rRMSEA, respectively), which were computed by the corrected
robust χ2 (Jorgensen, 2016), were evaluated by their acceptance rate (AR) with the cutoff values
set as .95, .95, .95, and .08, respectively (Hooper, Coughlan, &Mullen, 2008; Browne & Cudeck,
1993). We further presented the values with 5% type I error rate (95% quantile for rRMSEA and
5% quantile for the other fit indices).

7.2. Analysis I: The Quality of the Estimated p and the Generated Data

7.2.1. The Parameters of the Estimated p Consistent with previous results, the β1 and β2 of
the estimated p’s were precisely estimated across all experimental conditions. In contrast, the r ’s
were all attenuated compared to r∗’s under all conditions, as expected.

The D and RD of r are summarized by their values. The r ’s were attenuated more
when the non-normal level increased. The RD varied from − 8.04%(β1 = 0, β2 = − 1) to
− 47.87%(− 3, 10)whenr = 0.49, and it varied from − 8.65%(0,− 1) to − 55.05%(− 3, 10)
whenr = 0.294. The ranges (the maximum value minus the minimum value) of RD with the
same non-normal levels varied from −2.09% (0, 10) to −23.77% (0, 0) when r = 0.49 and from
−1.07% (0, 10) to −25.30% (0, 0) when r = 0.294. The large range of RD when β1 = 0 and
β2 = 0 implied that this condition has the largest differentiating effect across different shapes.
The trends of the D and RD when r = 0.294 or r = 0.49 were similar. The D and RD of r are
shown in Table 2.

7.2.2. Characteristics of the Sampling Distributions of β̂1, β̂2 and �̂ To save space, the results
of β̂1, β̂2 of Model 1 and �̂ of Model 3 are presented. The B’s and RB’s of β1 and β2 are
summarized by their values. The absolute mean RB’s of the β̂1 and β̂2 increased as sample size
decreased, and as the level of non-normality increased, but they were not affected by the model
complexity, as expected. When the sample size was 100, the absolute mean RB ranged from
0.02% (0, − 1) to 79.08% (0, 10) for the β̂1 and from 0.19% (0, − 1) to 39.00% (0, 10) for the
β̂2. Across all conditions, 10 out of 48 (22.92%) mean RB’s of β̂1 were substantial and 6 out of
48 (12.50%) mean RB’s of β̂1 were moderate. Similarly, 12 out of 48 (25.00%) mean RB’s of β̂2
were substantial and 6 out of 48 (12.50%) mean RB’s of β̂2 were moderate. The absolute values
of mean RB’s decreased sharply when sample size increased. When sample size was 2000, all
except one of the absolute mean RB’s were trivial; the maximum absolute mean RB of β̂1 was
5.18% (0, 10), and the one of β̂2 was 3.20% (0, 0). The SD of RB also decreased sharply with
increasing sample size which is expected.

The shapes of p’s also affected the mean RB’s. Only trivial absolute mean RB’s of β̂1 were
observed if data followed the p’s which were estimated with Prior 4 and Prior 5 even when sample
size was 100. For β̂2, similar situation was observed when data followed p’s were estimated with
Prior 1. The ranges of mean RB’s of β̂1 with the same non-normality level varied from 1.56% (0,
− 1) to 140.11% (0, 10) and the one of β̂2 varied from 2.12% (0, − 1) to 37.49% (0, 10) when
sample size was 100. When sample size increased to 2000, the range of mean RB with the same
non-normality level varied from 0.09% (0, − 1) to 10.11% (0, 10) for β̂1 and ranged from 0.18%
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Table 2.
The deviation (D) and relative deviation (RD) of different r under different conditions.

r=.49

β1, β2 0,0 0,3 −2,3

D RD D RD D RD

Prior1 − 0.05 − 11.16 − 0.13 − 27.12 − 0.13 − 26.99
Prior2 − 0.08 − 15.67 − 0.19 − 37.79 − 0.14 − 27.67
Prior3 − 0.05 − 10.66 − 0.17 − 35.60 − 0.16 − 32.63
Prior4 − 0.05 − 10.71 − 0.13 − 26.44 − 0.17 − 33.88
Prior5 − 0.07 − 14.90 − 0.14 − 29.04 − 0.19 − 38.26
Prior6 − 0.07 − 14.19 − 0.17 − 35.02 − 0.13 − 26.77
Prior7 − 0.14 − 29.11 − 0.18 − 36.31 − 0.13 − 26.72
Prior8 − 0.17 − 34.43 − 0.19 − 37.80 − 0.13 − 27.31

β1, β2 0,10 − 3, 10 0,−1

Prior1 − 0.22 − 45.42 − 0.16 − 33.19 − 0.04 − 8.04
Prior2 − 0.23 − 47.08 − 0.16 − 32.96 − 0.06 − 11.37
Prior3 − 0.23 − 46.69 − 0.21 − 41.93 − 0.05 − 9.37
Prior4 − 0.22 − 44.99 − 0.22 − 45.31 − 0.08 − 15.90
Prior5 − 0.23 − 45.99 − 0.23 − 47.87 − 0.06 − 11.26
Prior6 − 0.23 − 46.67 − 0.16 − 32.87 − 0.05 − 11.00
Prior7 − 0.23 − 46.70 − 0.16 − 32.57 − 0.07 − 15.30
Prior8 − 0.23 − 47.00 − 0.16 − 32.90 − 0.05 − 10.59

r=.294

β1, β2 0,0 0,3 −2,3

D RD D RD D RD

Prior1 − 0.03 − 11.26 − 0.08 − 28.84 − 0.10 − 32.47
Prior2 − 0.05 − 15.81 − 0.12 − 39.65 − 0.10 − 33.75
Prior3 − 0.03 − 10.71 − 0.11 − 37.15 − 0.11 − 38.26
Prior4 − 0.03 − 10.76 − 0.08 − 28.09 − 0.12 − 39.83
Prior5 − 0.04 − 15.04 − 0.09 − 30.84 − 0.13 − 43.50
Prior6 − 0.04 − 14.46 − 0.11 − 36.47 − 0.10 − 32.48
Prior7 − 0.09 − 29.73 − 0.11 − 37.95 − 0.10 − 32.59
Prior8 − 0.11 − 36.01 − 0.12 − 39.66 − 0.10 − 33.64

β1, β2 0,10 − 3, 10 0,−1

Prior1 − 0.15 − 50.63 − 0.12 − 39.89 − 0.03 − 8.65
Prior2 − 0.15 − 50.65 − 0.12 − 40.97 − 0.04 − 12.06
Prior3 − 0.15 − 50.52 − 0.14 − 49.06 − 0.03 − 9.75
Prior4 − 0.15 − 50.15 − 0.16 − 52.97 − 0.05 − 16.36
Prior5 − 0.15 − 51.22 − 0.16 − 55.05 − 0.04 − 11.95
Prior6 − 0.15 − 50.34 − 0.12 − 39.80 − 0.03 − 11.56
Prior7 − 0.15 − 50.32 − 0.12 − 39.78 − 0.05 − 15.93
Prior8 − 0.15 − 50.58 − 0.12 − 41.11 − 0.03 − 11.20

The numbers shown are rounded to the second decimal place.
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Table 3.
Mean and standard deviation (SD) of bias (B) and relative bias (RB) of β̂1 in each condition when sample size is 100 in
1000 replications.

β1, β2 0,0 0,3

B (SD) RB (SD) B (SD) RB (SD)

Prior1 0.00 0.15 0.17 15.10 − 0.00 0.47 − 0.13 47.46
Prior2 − 0.00 0.11 − 0.14 10.58 0.32 0.92 32.43 92.37
Prior3 0.00 0.18 0.27 18.20 0.15 0.57 15.43 57.35
Prior4 0.00 0.18 0.17 18.43 − 0.01 0.50 − 1.29 50.06
Prior5 − 0.00 0.11 − 0.10 11.21 0.00 0.46 0.09 45.52
Prior6 0.03 0.24 3.21 24.45 0.27 0.82 26.65 81.56
Prior7 0.07 0.39 7.48 38.68 0.28 0.89 27.67 89.29
Prior8 0.14 0.56 13.66 55.72 0.30 0.93 30.43 92.79

β1, β2 −2,3 0,10

Prior1 0.01 0.31 0.53 15.25 − 0.03 1.33 − 3.19 133.31
Prior2 0.02 0.31 0.89 15.49 0.79 1.64 79.08 164.50
Prior3 0.02 0.35 0.81 17.42 − 0.61 1.43 − 61.03 142.57
Prior4 0.02 0.34 0.91 17.05 0.02 1.35 1.75 135.31
Prior5 − 0.02 0.39 − 0.84 19.46 − 0.01 1.37 − 0.69 136.72
Prior6 0.01 0.31 0.55 15.45 0.77 1.60 77.13 160.28
Prior7 0.01 0.31 0.60 15.74 0.77 1.61 77.02 161.39
Prior8 0.02 0.32 0.80 16.15 0.78 1.63 78.41 162.71

β1, β2 −3,10 0,−1

Prior1 0.16 0.43 5.21 14.45 − 0.00 0.13 − 0.16 12.81
Prior2 0.18 0.51 6.02 17.02 0.00 0.11 0.13 11.17
Prior3 0.07 0.60 2.33 19.89 0.00 0.16 0.17 15.56
Prior4 0.04 0.70 1.49 23.44 − 0.00 0.15 − 0.12 15.08
Prior5 0.04 0.73 1.20 24.46 0.00 0.11 0.02 11.09
Prior6 0.16 0.45 5.25 14.92 0.01 0.15 0.90 14.72
Prior7 0.16 0.46 5.38 15.27 0.01 0.18 1.40 18.28
Prior8 0.18 0.53 6.11 17.65 0.01 0.14 0.93 13.64

The numbers shown are rounded to the second decimal place. Substantial RB’s are shown in bold and
moderate RB’s are shown in italic.

(0, − 1) to 3.33% (0, 3) for β̂2. The mean and SD of RB of β̂1 and β̂2 under all conditions when
sample size was 100 are shown in Tables 3 and 4.

Because the patterns of B’s and RB’s when r∗ = .49 or r∗ = .294 were very similar, they
were analyzed together. All but one of the mean RB’s of �̂ were substantial across all conditions
and showed a consistent pattern with the deviation of the �. The decrease depended mainly on
the degree of non-normality and not on the model complexity or sample size. The mean RB’s
decreased more when the level of non-normality increased. The average mean RB’s of all the r̂
varied from −8.59% (0, − 1) to −51.91% (− 3, 10). Within each non-normality level, the range
of the mean RB of �̂ was from 3.78% (0, 10) to 25.38% (0, 0).

7.3. Analysis II: The Fitted CFA Model

7.3.1. Improper Solutions For this paper, improper solutions included non-converged solutions
and Heywood cases. Improper solutions were excluded in the following analyses. The percentage
of improper solutions decreased with an increase in sample size and a decrease in non-normality
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Table 4.
Mean and standard deviation (SD) of bias (B) and relative bias (RB) of β̂2 in each condition when sample size is 100 in
1000 replications.

β1, β2 0,0 0,3

B (SD) RB (SD) B (SD) RB (SD)

Prior1 − 0.04 0.32 − 1.37 10.73 − 0.10 1.08 − 1.64 17.95
Prior2 − 0.02 0.38 − 0.76 12.61 − 2.27 4.20 − 37.90 69.95
Prior3 − 0.07 0.29 − 2.44 9.70 − 0.65 2.12 − 10.76 35.39
Prior4 − 0.07 0.29 − 2.19 9.81 − 0.17 1.06 − 2.89 17.71
Prior5 − 0.02 0.38 − 0.55 12.72 − 0.04 1.19 − 0.60 19.87
Prior6 − 0.12 0.42 − 3.96 14.10 − 1.65 3.42 − 27.44 56.93
Prior7 − 0.38 1.53 − 12.56 51.00 − 1.90 3.91 − 31.72 65.15
Prior8 − 1.03 2.74 − 34.41 91.21 − 2.23 4.23 − 37.10 70.46

β1, β2 −2,3 0,10

Prior1 0.17 1.67 2.81 27.81 − 0.49 3.87 − 3.74 29.76
Prior2 0.10 1.59 1.67 26.44 − 5.02 6.65 − 38.58 51.12
Prior3 0.09 1.73 1.47 28.87 − 3.70 5.81 − 28.48 44.71
Prior4 0.06 1.62 1.02 26.97 − 0.70 3.77 − 5.36 28.99
Prior5 0.30 2.02 5.01 33.69 − 0.20 4.08 − 1.51 31.39
Prior6 0.16 1.66 2.71 27.66 − 4.72 6.40 − 36.34 49.26
Prior7 0.14 1.67 2.41 27.85 − 4.96 6.47 − 38.12 49.80
Prior8 0.08 1.63 1.40 27.17 − 5.07 6.56 − 39.00 50.46

β1, β2 −3,10 0,−1

Prior1 − 0.52 3.48 − 4.02 26.79 − 0.01 0.15 − 0.53 7.54
Prior2 − 1.09 3.95 − 8.42 30.40 − 0.01 0.18 − 0.27 8.91
Prior3 0.30 4.91 2.34 37.77 − 0.03 0.12 − 1.45 5.84
Prior4 0.14 4.88 1.11 37.56 − 0.03 0.26 − 1.29 13.19
Prior5 0.70 5.73 5.39 44.04 − 0.00 0.18 − 0.19 9.02
Prior6 − 0.57 3.53 − 4.40 27.17 − 0.03 0.19 − 1.35 9.70
Prior7 − 0.66 3.62 − 5.11 27.88 − 0.05 0.33 − 2.31 16.68
Prior8 − 1.20 4.13 − 9.25 31.80 − 0.02 0.16 − 0.99 8.24

The numbers shown are rounded to the second decimal place. Substantial RB’s are shown in bold and
moderate RB’s are shown in italic.

level or model complexity. Similar findings have been found in Flora and Curran (2004). When
β2 ≤ 3, the percentages of improper solutions were all less than 7%. For Model 1 to Model 4
respectively, the highest improper solution percentages were 18.20% (−3, 10), 20.20% (0, 10),
56.40% (−3, 10) and 59.60% (0, 10) when sample size was 100. When sample size increased,
the percentage of improper solutions decreased sharply. When sample size was 500, there was
only one improper solution across all conditions.

The distribution shape affected the percentage of improper solutions, especially when sample
size was small, non-normality level was high and model was complex. When β2 ≤ 3, the ranges
of improper solutions percentages of the same β1 and β2 were less than 10%, even for the most
complex model. When β2 = 10, the ranges of percentages of improper solutions within the same
β1 and β2 expanded a lot. The largest ranges were 18.10% (−3, 10), 16.70% (0, 10), 56.00%
(−3, 10) and 56.20% (0, 10) for Model 1 to Model, 4 respectively. The p’s estimated with Prior
4 and Prior 5 consistently showed higher improper solution percentages.
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7.3.2. RB and RR of Robust χ2 As mentioned, the mean RB and RR of the robust χ2 were
examined to evaluate the effect of the experimental factors. The RR is considered acceptable if
under .10. The degrees-of-freedom of the four models, 5, 35, 34, and 169, were the expected χ2

values and were used as θ ’s to calculate RB’s.
The mean RB and the RR of the robust χ2 decreased as model complexity decreased, sample

size increased, and level of non-normality decreased. The RB and RR generally behaved better
when the β1 and β2 values were (0, 0) or (0, −1) than the other combinations in all conditions.
Most of substantial mean RB’s and unacceptable RR’s occurred when β2 = 10 across all model
complexity with small sample size. When sample size increased to 500, there were only trivial
mean RB’s and the RR’s behaved well in all conditions.

The range of mean RB and RR of the robust χ2 with the same β1 and β2 was smaller when
the model complexity decreased, the level of non-normality decreased and sample size increased.
When sample size was 100, the largest ranges occurred when the β1 = 0 and β2 = 10 across
all models. In Model 1 to Model 4, the largest range of mean RB (RR) with the same β1 and β2
were 91.43% (.23), 100.36% (.50), 153.33% (.72), and 122.31% (.83) when sample size was 100.
When sample size was over 500, all the ranges of mean RB and RR were smaller than 10% and
0.10. The details for sample size 100 and 200 are shown in Tables 5 and 6.

7.3.3. AR of Commonly Used Cutoff Criteria and 95% Quantile rRMSEA and 5% Quantile of
rCFI, rTLI, and rNFI The percentage of acceptance rates of rRMSEA, rCFI, rTLI and rNFIwas
essential to model evaluation via applying the recommended cutoff. A fit index was considered
acceptable if the AR was greater than .90 and the deviance between the 95%/5% quantile and the
recommended cutoff is smaller than .05.

The trends in the rRMSEA, rCFI, rTLI and rNFI were similar to the trend of the robust χ2. In
the other words, all the fit indices performed better when sample size increased, the level of non-
normality decreased and model complexity decreased. Across all models, the rRMSEA and rCFI
were relatively robust among the fit indices we examined. They tended to have the highest AR
and their 95%/5% quantiles have lowest deviance from the recommended cutoff in all conditions
among the four fit indices. Followed by the rTLI. The rNFI was the most vulnerable fit index.

The trend in the effect of distribution shape on the fit indices decreased when sample size
increased, the level of non-normality decreased and model complexity decreased. The rRMSEA
was also the most robust fit index among the four indices in the range of AR and 95%/5% quantile
with the same β1 and β2. The rRMSEA was not especially robust to the effect of distribution
shape when sample size was 100. However, it became the most robust one among the four fit
indices with the smallest range of AR and the 95% quantile with the same β1 and β2 when the
sample size increased. A summary of the results when sample size was 100 and 200 is shown in
Table 7.

For the simplest model, Model 1, only 6 (12.50%) 5% quantiles and 9 (18.75%) AR’s of rCFI
were not in the acceptable range and they all had β2 = 10 when sample size was 100. In contrast,
none of rRMSEA has AR in the acceptable range across all the non-normality levels with this
limited sample size. Although all of AR’s were lower than 0.90, only 9 (18.75%) 95% quantile
were greater than 0.13 and they all occurred when β2 = 10. Except β1 = 0 and β2 = −1, the
rTLI and rNFI performed badly in at least one case in all the non-normality levels.

When sample size increased to 200, the rRMSEA and rCFI performed well across all the
non-normality levels. The rTLI only performed badly when β2 = 10. In addition to β2 = 10,
the rNFI also performed badly in one case when β1 = −2 and β2 = 3. For rTLI and rNFI,
respectively, 2 (4.17%) and 1 (2.08%) of 5% quantile, and 7 (14.58%) and 12 (25.00%) of AR’s
were not in the accepted range. When sample size was 500, the fit indices were all performed
well.
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Table 5.
Mean RB and RR of robust χ2 statistics of Model 1 and Model 2 with sample size 100 to 200 in 1000 replications.

β1, β2 0,0 0,3 −2,3 0, 10 − 3, 10 0,-1

RB RR RB RR RB RR RB RR RB RR RB RR

Model 1
n = 100
Prior1 − 0.11 0.05 11.39 0.08 7.16 0.06 78.53 0.24 18.43 0.10 2.17 0.05
Prior2 − 1.84 0.04 − 1.13 0.04 14.30 0.07 1.94 0.04 23.82 0.10 1.13 0.05
Prior3 4.55 0.06 − 3.10 0.06 10.37 0.06 12.02 0.09 58.90 0.19 1.48 0.06
Prior4 0.41 0.04 12.91 0.09 6.27 0.06 90.53 0.27 49.83 0.20 1.90 0.04
Prior5 0.11 0.06 3.38 0.06 6.61 0.06 75.56 0.22 87.61 0.28 0.07 0.05
Prior6 5.35 0.07 − 2.39 0.06 11.09 0.06 1.86 0.05 18.21 0.09 2.06 0.05
Prior7 − 1.13 0.05 2.06 0.06 12.43 0.08 − 0.90 0.04 20.07 0.10 3.78 0.06
Prior8 0.85 0.05 1.87 0.05 15.93 0.08 1.21 0.04 33.04 0.12 1.69 0.05
n = 200
Prior1 0.26 0.05 3.00 0.06 2.37 0.05 16.55 0.08 7.43 0.07 − 1.09 0.05
Prior2 − 0.92 0.05 2.87 0.05 5.63 0.05 − 0.37 0.05 9.86 0.06 − 1.03 0.05
Prior3 − 0.20 0.04 − 3.05 0.04 4.71 0.06 0.29 0.06 7.25 0.07 1.89 0.05
Prior4 0.91 0.04 5.74 0.06 1.85 0.06 22.00 0.09 12.09 0.08 0.66 0.05
Prior5 1.52 0.05 2.79 0.06 0.25 0.04 12.75 0.08 14.32 0.07 − 0.48 0.04
Prior6 4.99 0.06 − 1.39 0.05 4.71 0.06 − 1.55 0.04 9.03 0.08 1.64 0.06
Prior7 − 5.33 0.04 − 1.68 0.04 5.75 0.06 0.24 0.05 10.29 0.06 − 0.26 0.06
Prior8 − 1.29 0.05 2.01 0.05 3.58 0.05 − 2.75 0.03 19.16 0.10 − 3.11 0.04
Model 2
n = 100
Prior1 2.84 0.05 9.25 0.08 11.01 0.08 103.59 0.53 17.25 0.14 1.85 0.03
Prior2 1.92 0.05 2.63 0.04 13.35 0.09 5.74 0.06 22.98 0.20 2.16 0.05
Prior3 6.50 0.08 3.43 0.07 13.41 0.10 32.40 0.28 69.64 0.41 3.62 0.05
Prior4 6.41 0.07 11.98 0.12 8.99 0.06 95.49 0.55 72.74 0.46 3.28 0.04
Prior5 2.19 0.04 9.70 0.10 10.85 0.08 105.05 0.54 101.81 0.58 2.64 0.04
Prior6 6.56 0.06 5.10 0.07 11.71 0.09 7.05 0.08 20.39 0.18 5.03 0.06
Prior7 3.33 0.06 5.36 0.06 13.02 0.10 6.00 0.07 19.70 0.16 6.48 0.05
Prior8 3.44 0.03 2.52 0.03 15.70 0.12 4.69 0.05 26.64 0.24 3.49 0.05
n = 200
Prior1 0.29 0.04 3.91 0.07 5.14 0.06 19.97 0.17 9.62 0.09 0.22 0.04
Prior2 1.89 0.06 3.31 0.05 6.47 0.05 3.58 0.04 13.79 0.11 0.42 0.04
Prior3 1.60 0.05 1.46 0.06 5.99 0.06 3.27 0.06 11.05 0.09 2.20 0.05
Prior4 3.01 0.06 5.22 0.07 4.33 0.06 20.70 0.17 16.56 0.12 2.78 0.04
Prior5 1.29 0.05 3.17 0.06 4.15 0.04 22.56 0.17 23.45 0.13 1.19 0.05
Prior6 4.44 0.07 2.57 0.06 6.13 0.06 5.25 0.04 10.72 0.10 3.87 0.06
Prior7 0.45 0.05 3.39 0.06 7.64 0.07 4.84 0.06 12.10 0.11 4.40 0.06
Prior8 0.78 0.05 2.79 0.05 7.10 0.07 2.84 0.04 16.89 0.15 2.22 0.05

The numbers shown are rounded to the second decimal place. The RB’s and RR’s which are not in the
defined acceptable range (RB>10%; RR>.10) are shown in bold.
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Table 6.
Mean RB and RR of robust χ2 statistics of Model 3 and Model 4 with sample size 100 to 200 in 1000 replications.

β1, β2 0,0 0,3 −2,3 0, 10 − 3, 10 0,-1

RB RR RB RR RB RR RB RR RB RR RB RR

Model 3
n = 100
Prior1 6.06 0.08 12.92 0.13 13.67 0.12 150.72 0.79 20.05 0.18 5.26 0.07
Prior2 4.79 0.06 5.58 0.06 16.44 0.13 9.75 0.11 25.29 0.24 4.88 0.06
Prior3 6.97 0.08 6.62 0.10 20.00 0.16 44.79 0.52 88.04 0.65 7.52 0.08
Prior4 9.16 0.09 14.72 0.16 12.49 0.10 149.25 0.78 77.01 0.67 7.61 0.09
Prior5 5.00 0.07 10.00 0.11 17.19 0.18 161.38 0.81 102.11 0.82 4.84 0.05
Prior6 11.34 0.11 6.26 0.07 15.33 0.13 13.41 0.17 24.13 0.22 6.87 0.07
Prior7 5.85 0.07 6.03 0.07 13.96 0.11 11.75 0.14 24.52 0.22 7.76 0.08
Prior8 4.52 0.05 5.74 0.06 19.42 0.16 8.05 0.09 31.31 0.31 5.62 0.06
n = 200
Prior1 2.33 0.06 3.97 0.07 5.40 0.07 55.66 0.33 11.51 0.10 1.72 0.05
Prior2 2.53 0.06 2.91 0.05 6.55 0.07 2.85 0.05 15.11 0.14 1.98 0.06
Prior3 4.19 0.06 2.16 0.06 8.64 0.10 10.60 0.12 20.16 0.17 3.80 0.06
Prior4 4.01 0.06 5.30 0.07 8.22 0.09 52.98 0.36 37.03 0.27 5.45 0.08
Prior5 1.91 0.05 4.00 0.06 5.47 0.08 49.50 0.32 44.55 0.39 2.18 0.05
Prior6 6.85 0.08 4.08 0.06 7.13 0.07 4.64 0.07 14.73 0.13 5.28 0.07
Prior7 2.83 0.06 5.34 0.07 7.96 0.08 5.19 0.06 15.09 0.14 4.75 0.06
Prior8 1.99 0.06 3.22 0.05 9.17 0.08 4.20 0.06 18.99 0.17 2.90 0.05
Model 4
n = 100
Prior1 4.88 0.06 10.72 0.19 9.72 0.14 120.21 0.95 14.26 0.29 3.84 0.05
Prior2 4.28 0.06 3.83 0.03 10.11 0.13 7.86 0.13 17.24 0.40 3.18 0.05
Prior3 6.62 0.10 9.32 0.21 12.78 0.22 44.19 0.78 75.76 0.90 5.12 0.08
Prior4 6.74 0.11 11.53 0.20 8.22 0.08 120.81 0.96 70.93 0.92 5.80 0.07
Prior5 4.41 0.06 9.97 0.18 17.59 0.33 130.17 0.95 92.90 0.96 3.64 0.04
Prior6 7.71 0.11 6.50 0.10 9.92 0.15 13.89 0.30 15.66 0.34 5.38 0.07
Prior7 5.01 0.07 5.76 0.07 10.81 0.16 11.00 0.22 17.01 0.38 6.13 0.08
Prior8 3.88 0.05 3.99 0.04 12.97 0.24 8.91 0.16 21.31 0.60 4.59 0.05
n = 200
Prior1 2.39 0.04 4.50 0.08 5.68 0.08 55.80 0.64 8.77 0.14 1.99 0.04
Prior2 2.60 0.05 3.04 0.05 6.11 0.10 3.59 0.03 11.47 0.21 2.22 0.04
Prior3 3.55 0.07 2.79 0.05 6.41 0.09 13.85 0.25 19.83 0.31 2.75 0.05
Prior4 3.62 0.06 5.71 0.07 4.51 0.05 56.34 0.64 33.10 0.49 5.26 0.08
Prior5 2.65 0.05 3.44 0.07 5.43 0.08 58.73 0.66 51.85 0.71 1.95 0.03
Prior6 4.91 0.08 4.06 0.06 5.19 0.07 5.20 0.08 10.07 0.18 3.68 0.06
Prior7 2.89 0.05 5.60 0.09 5.44 0.07 4.23 0.04 10.48 0.18 4.23 0.08
Prior8 2.45 0.03 2.67 0.04 6.31 0.07 3.67 0.04 14.03 0.29 2.36 0.06

The numbers shown are rounded to the second decimal place. The RB’s and RR’s which are not in the
defined acceptable range (RB>10%; RR> .10) are shown in bold.
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Table 7.
The summary of the 95% (5%) quantile and AR of the fit indices in each model.

n = 100 Q̄ ĀR Q% AR% bQ β1, β2 mAR β1, β2 rQ β1, β2 rAR β1, β2

Model 1
rRMSEA 0.13 0.81 18.75 100.00 0.23 − 3,10 0.64 0,10 0.13 0,10 0.24 0,10
rCFI 0.93 0.94 12.50 18.75 0.66 − 3,10 0.69 −3,10 0.29 −3,10 0.26 −3,10
rTLI 0.86 0.86 47.92 70.83 0.32 − 3,10 0.61 −3,10 0.58 −3,10 0.24 −3,10
rNFI 0.89 0.78 35.42 70.83 0.65 − 3,10 0.43 −3,10 0.27 −3,10 0.36 −3,10

Model 2
rRMSEA 0.08 0.92 14.58 14.58 0.20 0,10 0.47 −3,10 0.14 0,10 0.49 −3,10
rCFI 0.92 0.92 14.58 14.58 0.53 − 3,10 0.44 −3,10 0.43 −3,10 0.54 −3,10
rTLI 0.90 0.90 14.58 29.17 0.39 − 3,10 0.41 −3,10 0.56 −3,10 0.53 −3,10
rNFI 0.84 0.32 66.67 100.00 0.47 − 3,10 0.02 −3,10 0.41 −3,10 0.66 0,0

Model 3
rRMSEA 0.09 0.87 12.50 20.83 0.21 0,10 0.23 −3,10 0.13 0,10 0.71 −3,10
rCFI 0.88 0.82 25.00 45.83 0.56 0,10 0.17 −3,10 0.36 −3,10 0.71 −3,10
rTLI 0.85 0.77 41.67 68.75 0.41 0,10 0.16 −3,10 0.48 −3,10 0.64 −3,10
rNFI 0.79 0.09 89.58 100.00 0.49 − 3,10 0.00 — 0.33 −3,10 0.36 0,0

Model 4
rRMSEA 0.06 0.90 8.33 14.58 0.17 0,10 0.17 0,10 0.11 0,10 0.82 −3,10
rCFI 0.88 0.80 27.08 43.75 0.40 − 3,10 0.04 −3,10 0.54 −3,10 0.85 −3,10
rTLI 0.87 0.78 29.17 43.75 0.33 − 3,10 0.03 −3,10 0.60 −3,10 0.81 −3,10
rNFI 0.72 0.00 100.00 100.00 0.32 − 3,10 0.00 — 0.44 −3,10 0.00 0,10

n = 200 Q̄ ĀR Q% AR% bQ β1, β2 mAR β1, β2 rQ β1, β2 rAR β1, β2

Model 1
rRMSEA 0.08 0.95 0.00 0.00 0.09 0,10 0.91 −3,10 0.02 0,10 0.05 0,10
rCFI 0.97 0.99 0.00 0.00 0.94 − 3,10 0.92 −3,10 0.03 −3,10 0.07 −3,10
rTLI 0.95 0.95 4.17 14.58 0.88 − 3,10 0.83 −3,10 0.07 −3,10 0.12 −3,10
rNFI 0.95 0.94 2.08 25.00 0.89 − 3,10 0.69 −3,10 0.07 −3,10 0.27 −3,10

Model 2
rRMSEA 0.05 1.00 0.00 0.00 0.09 − 3,10 0.93 −3,10 0.04 −3,10 0.07 −3,10
rCFI 0.98 0.99 2.08 2.08 0.81 − 3,10 0.90 −3,10 0.17 −3,10 0.10 −3,10
rTLI 0.97 0.99 4.17 2.08 0.75 − 3,10 0.88 −3,10 0.22 −3,10 0.12 −3,10
rNFI 0.93 0.72 20.83 60.42 0.73 − 3,10 0.06 −3,10 0.20 −3,10 0.75 −3,10

Model 3
rRMSEA 0.06 0.98 0.00 10.42 0.12 0,10 0.73 −3,10 0.07 0,10 0.27 −3,10
rCFI 0.94 0.96 12.50 12.50 0.69 − 3,10 0.61 −3,10 0.27 −3,10 0.38 −3,10
rTLI 0.93 0.94 12.50 14.58 0.59 − 3,10 0.58 −3,10 0.36 −3,10 0.39 −3,10
rNFI 0.88 0.45 33.33 72.92 0.61 − 3,10 0.00 −3,10 0.29 −3,10 0.58 0,0

The shape had the greatest effect when β2 = 10 and sample size was 100. The largest ranges
of 95% (5%) quantile (AR) within each β1 and β2 combination were .13 (.24), .29 (.26), .58 (.24)
and .27 (.36) for the rCFI, rTLI, rNFI and rRMSEA, respectively. The largest ranges shrank when
sample size increased.

For Model 2, the rRMSEA and rCFI only performed badly when β2 = 10 and sample size
was 100. The rRMSEA and rCFI both had 7 (14.58%) of 95%/5% quantile and 7 (14.58%) of AR
which were out of the accepted range. In addition to β2 = 10, the rTLI also performed badly in
one case when β1 = −2 and β2 = 3. The rNFI performed badly in all non-normality level.
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Table 7.
continued

n = 200 Q̄ ĀR Q% AR% bQ β1, β2 mAR β1, β2 rQ β1, β2 rAR β1, β2

Model 4
rRMSEA 0.04 0.99 0.00 6.25 0.09 0,10 0.85 0,10 0.06 0,10 0.15 0,10
rCFI 0.95 0.93 14.58 14.58 0.65 − 3,10 0.30 −3,10 0.32 −3,10 0.70 −3,10
rTLI 0.94 0.93 14.58 14.58 0.61 − 3,10 0.29 −3,10 0.36 −3,10 0.71 −3,10
rNFI 0.84 0.05 68.75 100.00 0.52 − 3,10 0.00 — 0.36 −3,10 0.30 0,0

The numbers shown are rounded to the second decimal place. The Q̄ and ĀR columns indicate the mean
of the 95% (5%) quantiles and mean of AR of the fit index of the 6 different non-normality levels and 8
distributions. The Q% and AR% columns indicate the percentages of quantiles and AR’s of fit indices which
were out of the accepted range of the 6 different non-normality levels and 8 distributions. The bQ column
indicates the maximum 95% quantile of rRMSEA and the minimum 5% quantile of the other fit indices.
The mAR indicates the minimum AR of the corresponding fit index. The rQ and rAR columns indicate the
maximum range of the 5% or 95% quantile and AR of the fit index of a specified β1 and β2. The β1 and
β2 following bQ, mAR, rQ and rAR indicate the β1 and β2 combination wherein the bQ, mAR, rQ and
rAR occurred. The — in cell indicates the bQ, mAR, rQ and rAR values occurred in multiple β1 and β2
combinations.

When sample size increased to 200, rRMSEA performed well in all non-normality levels and
its largest 95% quantile value was only 0.09. The rCFI and rTLI also performed well. Only less
than 5% of the 5% quantile and AR of these two fit indices were in the unacceptable range, and
they all occurred when β2 = 10. In contrast, the rNFI performed badly in at least one case of all
non-normality levels.When sample size increased to 500, the rRMSEA, rCFI and rTLI performed
well in all conditions. However, the rNFI still performed badly in one case when β2 = 10. The
rNFI performed well in all conditions when sample size increased to 1000.

The largest ranges of AR on rRMSEA, rCFI, rTLI, and rNFI within each β1 and β2 condition
were .49 (− 3, 10), .54 (− 3, 10), .53 (− 3, 10), and .75 (− 3, 10), respectively. The largest range of
95%/5% quantile was 0.14 (0, 10), 0.43 (− 3, 10), 0.56 (− 3, 10) and 0.41 (− 3, 10) for rRMSEA,
rCFI, rTLI and rNFI, respectively. All the largest range of AR occurred when sample size was 100
except the one of rNFI which occurred when sample size was 200. It was due to the low AR’s of
rNFI in all conditions when sample size was 100 which was reflected by the low mean AR (.32).

For Model 3, the rRMSEA performed badly when β2 = 10 and in one case when β1 = −2
and β2 = 3 with sample size 100. There were 6 (12.50%) 95% quantile and 10 (20.83%) AR
out of the accepted range. There were 12 (25.00%) of 5% quantile and 22 (45.83%) of AR out
of the accepted range which all occurred when β2 ≥ 3. The rTLI performed badly when β2 ≥ 0
and 20 (41.67%) of 5% quantile and 33 (68.75%) of AR were out of the accepted range. The
rNFI performed badly in all non-normality levels. Only 5 (10.42%) of the 5% quantile were in the
accepted range. The maximumAR of rNFI was .37, and thus it was unlikely to obtain an accepted
rNFI value when sample size was 100 no matter the non-normal level.

When sample size was 200, only 5 (10.42%) AR’s of rRMSEA were badly performed and
they all occurred when β2 = 10. The rCFI and rTLI also performed badly only when the β2 = 10;
no more than 7 (14.58%) cases had 5% quantile or AR out of the accepted range. In contrast, the
rNFI performed badly when the β2 ≥ 0. There were 16 (33.33%) 5% quantile and 35 (72.93%)
AR’s out of the accepted range. When sample size increased to 500, the rRMSEA, rCFI and
rNFI performed well across all the levels of non-normality. The rNFI still performed badly when
β2 = 10 with 11 (22.92%) AR’s out of the accepted range. The rNFI performed well across all
levels of non-normality until sample size increased to 1000.
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The largest ranges of AR within each β1 and β2 combination of the rRMSEA, rCFI, rTLI,
and rNFI were .71 (− 3, 10), .71 (− 3, 10), .64 (− 3, 10), and .58 (− 3, 10). All the largest ranges
occurred when the sample size was 100 except the one of rNFI which occurred when sample size
was 500. The largest ranges of 95%/5% quantile of the rRMSEA, rCFI, rTLI, and rNFI were .13
(0, 10), .36 (− 3, 10), .48 (− 3, 10), and .33 (− 3, 10), respectively, when sample size was 100.

For Model 4, the trends were almost identical to the trends in Model 3. The largest ranges
of AR within each β1 and β2 combination of the rRMSEA, rCFI, rTLI, and rNFI were .82 (− 3,
10), .85 (− 3, 10), .81 (− 3, 10), and .90 (− 3, 10), respectively. All the largest ranges occurred
when sample size was 100 except the one of the rNFI which occurred when sample size was 500.
The largest ranges of 95% / 5% quantile of the rRMSEA, rCFI, rTLI, and rNFI were .11 (0, 10),
.54 (− 3, 10), .60 (− 3, 10), .44 (− 3, 10) when sample size was 100. Moreover, all the AR’s of
rNFI were smaller than .01 and thus it was very unlikely to obtain an accepted rNFI value when
sample size was 100.

Considering the effect of the distribution shape, all the fit indices of the p’s estimated with
Prior 3 and Prior 5 performed worse than the others across all levels of non-normality. When the
level of non-normality was severe (β2 = 10), the fit indices of the p’s estimated with Prior 1 and
Prior 4 performed badly as well.

8. Conclusion and Discussion

In this paper, two entropy-based procedures,MaxEnt andMinxEnt,were proposed to generate
multivariate ordinal distributions with pre-specified β1 and β2 in a systematic way. The p j is
estimated under the marginal MaxEnt approach and MinxEnt procedures and the τ is estimated
under the global MaxEnt approach. For marginal MaxEnt approach, only the β1 and β2 are need
to be pre-specified. In addition to β1 and β2, the p∗ whose parameters are all specified is also
required for global MaxEnt approach. In contrast, the ideal distributions, q j ’s, β1 and β2 are
needed to be pre-specified for MinxEnt procedure.

Two analyses were conducted to examine our procedures and to show its applicability. Anal-
ysis I showed that our proposed procedures can estimate p’s precisely. Our approaches yielded
an excellent agreement between the specified and estimated β1 and β2 of p across a wide range
of values. In addition, our procedures can also generate data with the required β1 and β2 in most
situations with satisfactory precision when the sample size is moderate (500). These characteris-
tics make our procedures attractive ways to generate data with pre-specified β1 and β2. In detail,
our MaxEnt procedure was capable of generating data from prudent and smooth distributions
where zero probability is avoided. Our MinxEnt procedure provides an easy way for researchers
to generate data from distributions not only satisfying the pre-specified β1 and β2 but also close
to the distribution shapes which are frequently seen in their research fields. When considering the
computing speed, our marginal MaxEnt and MinxEnt procedures are computationally very fast
with CPU time less than one minute when five categories p j ’s are estimated as programmed in
R. The computer authors used to test equips Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz.

Our global MaxEnt approach is capable of being applied when p∗ is assumed. Although it
is programmed when p∗ is set as the MVN in our R package, it can be programmed in R with
other p∗’s by interested users. However, it is beyond the scope of this paper to explore other
distributions for the p∗’s.

To generate y’s through our procedures, the first step is to specify the parameters of p∗,
which has the required property, such as specified �∗. Then, the τ can be estimated by the global
MaxEnt approach or be obtained by applying the inverse CDF function of the p∗

j , estimated by
marginal MaxEnt approach or MinxEnt procedure. Then, users could generate y∗ follows p∗, and
apply (1) to transform y∗ to y.
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It is worth noting that the p∗’s or p∗
j ’s are not required to be specified when the marginal

MaxEnt approach or MinxEnt procedure is applied to estimate p j ’s. The p∗
j ’s are only required

when estimating τ j . Therefore, all the continuous non-normal data generation procedures which
are able to generate y∗ following known p∗

j ’s but unknown p∗ can be used to generate y through
our procedure. The p j can be estimated by our marginal MaxEnt and MinxEnt procedures, then
compute τ j and transform y∗ into y according to Eq. (1). For instance, the copula procedure could
be easily applied with these two approaches even when the joint PDF is unknown (see Mair et
al. (2012) for a basic introduction of the copula and how to use it to generate data within SEM).
This fact provides great flexibility to these two approaches.

It should be noted that the marginal MaxEnt procedure sacrifices the maximum entropy
property of the estimated distribution p. As we have shown, the entropy of p decreases when the
degree of dependence of y∗

j ’s increases when p∗ is set as MVN. In our numerical evaluation, the
marginal approach is fast and relatively robust. However, it is worth noting that the result depends
on our choice of p∗, which is set as the MVN (specifically, bivariate MVN). The result might
be different if other p∗’s are chosen. However, we recommend applying the marginal approach
to generate data when the MVN is set as p∗ and suggests the researcher to evaluate the entropy
decrease before choosing between the two procedures.

Our procedures have wide freedom to estimate p’s with different shapes but the same β1 and
β2. In particular, an estimatedm-dimensional p can have m different p j ’s, whose k j , β1 j and β2 j
can be specified arbitrarily once the inequality of β1 and β2: β2

1 j ≤ β2 j + 2 is satisfied (Rohatgi
& Székely, 1989). The shapes of the distributions with the same β1 and β2 could be varied by
carefully specifying the q j when applying the MinxEnt procedure. However, it is worth noting
that the estimated distributions are restricted by the setting of q j , which means that the p is fixed
once we specify the same q j ’s. In other words, the p’s are still restricted by the selection of q j ’s.

In Analysis II, our results showed that all the test statistics we examined tended to perform
worse when non-normality level increases. However, the distribution setting also impacts their
performances, especially when both the β1 and β2 are far from 0, the sample size is small, and
the model is complex. Under these conditions, the ranges in empirical Type I error rates could
be as large as 80% and the ranges of the AR rates could achieve 90%. In other words, the robust
χ2 could perform relatively well in extreme conditions, such as small sample size, severe non-
normality, and complex models. For example, the smallest RR of robust χ2 was 9% in Model 3
and 13% in Model 4 when β1 = 0, β2 = 10 and sample size was 100. This has not been shown
in previous robustness research. Generally speaking, these ranges are reduced when sample size
increases, except for the rNFI in the complex models. In complex models, the rNFI is severely
underestimated in all distribution shapes when β2 increases to 3 or higher and sample size is
relatively small. Thus, the ranges of the AR rate within those conditions are small.

Three possible reasons can explain the results. First, large β1 and β2 imply large probabilities
in very few categories and small probabilities in other categories. In this case, the sampling
distributions of the generated data are unstable. Second, large values of the β1 and β2 can also
lead to a substantial number of empty cells in p. The empty cells might result in unreliable
estimation (Yang-Wallentin et al., 2010). Third, the different attenuated degree of correlation
coefficients caused by the shapes of p’s might lead to different baselines of the fit indices (For
instance, the chi2 value of the null model in TLI), and further impact their values. However, all
of these explanations are arguable. For instance, we could find the distributions with the worst
performing statistics have relatively larger probabilities for the categories have small probabilities
when β1 = 0 and β2 = 10. In addition, we could also observe the conditions within which the
correlation coefficients attenuation varies a lot, but the fit indices perform only trivial differences
and vice versa. Therefore, these findings deserve additional research.

In conclusion, the results of these studies suggest that our entropy-based procedures are
valuable tools for (a) generating data following distributions with specific characteristics or
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researchers’ knowledge subject to pre-specified β1 and β2, and (b) investigating the effect of
the shape of observed ordinal distributions when the β1 and β2 are controlled. With these proce-
dures, new areas of robustness research can be explored and easily tailored to different research
areas. Our procedures provide researchers simple methods to conduct the Monte Carlo studies
with discrete probability distributions, and open the door to a wide range of possible robustness
studies.
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