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Abstract 

This report aims to showcase the value of implementing a Bayesian framework to analyse 

and report results from international large-scale surveys and provide guidance to users who 

want to analyse the data using this approach. The motivation for this report stems from the 

recognition that Bayesian statistical inference is fast becoming a popular methodological 

framework for the analysis of educational data generally, and large-scale surveys more 

specifically. The report argues that Bayesian statistical methods can provide a more 

nuanced analysis of results of policy relevance compared to standard frequentist 

approaches commonly found in large-scale survey reports. The data utilised for this report 

comes from the Teaching and Learning International Survey (TALIS). The report provides 

steps in implementing a Bayesian analysis and proposes a workflow that can be applied not 

only to TALIS but to large-scale surveys in general. The report closes with a discussion of 

other Bayesian approaches to international large-scale survey data, in particular for 

predictive modelling. 
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1. Introduction 

This report aims to showcase the value of implementing a Bayesian framework to analyse 

and report on data from international large-scale surveys with the Organisation for 

Economic Co-operation and Development (OECD) Teaching and Learning International 

Survey (TALIS) (OECD, 2019[1]; OECD, 2020[2]) serving as an example, and to provide 

guidance to users who want to analyse the data using this approach. The motivation for this 

report stems from the recognition that Bayesian statistical inference is fast becoming a 

popular methodological framework for the analysis of educational data generally, and 

large-scale surveys more specifically. 

Bayesian inference can be conceptualised as a framework for quantifying uncertainty in 

statistical models. This uncertainty arises in not knowing (or ever knowing) the true value 

of a parameter of interest, for example a regression coefficient. This uncertainty is encoded 

into a Bayesian analysis through forming a probability distribution for the parameter(s) of 

interest describing the analyst’s belief, before seeing the data, as to the central value and 

variance of a parameter. The analyst’s prior beliefs can be more or less “informative”, 

arising from a summary of past research, expert opinion, or both. The mechanics of 

Bayesian theorem (described in more detail below) combines prior beliefs with the extant 

data in hand to provide updated distributions of the parameters of interest. The major 

advantage of the Bayesian approach is how such results are interpreted. By explicitly 

assigning a probability distribution to parameter values, Bayesian analysis provides the 

framework to help answer questions such as “What is the most likely range of values for a 

given parameter?” or “What is the probability that a parameter exceeds a certain value?” 

The advantage of presenting results in this fashion is that it provides a much more nuanced 

analysis of the effects of interest, and is, arguably, much more informative to policy makers 

than simply indicating whether an effect is statistically significant or not. 

1.1. Purpose and organisation of the report 

The OECD published a two-volume report based on the results of TALIS 2018. The first 

volume was entitled TALIS 2018 Results (Volume I): Teachers and School Leaders as 

Lifelong Learners (OECD, 2019[1]) and the second volume was entitled TALIS 2018 Results 

(Volume II): Teachers and School Leaders as Valued Professionals (OECD, 2020[2]). Both 

volumes not only contain detailed descriptive statistics across countries/economies, as well 

as by contextual variables, but, also, these volumes report the results of statistical models 

designed to provide predictive information regarding important outcomes of interest. For 

example, Volume II summarises the results of various regression analyses aimed at 

separately identifying relevant predictors of teacher job satisfaction and teacher 

self-efficacy – see Figures II.1.7 and II.1.8 in OECD (2020[2]). The analyses of these 

outcomes were carried out as follows: for each country, least-squares regression analysis 

was conducted with the TALIS scale of teacher job satisfaction or teacher self-efficacy as 

the dependent variable, and predictors, such as whether the teacher engaged in induction 

activities when joining the school. There were nine separate regression analyses. Many of 

these added control variables such as teachers’ gender, years of experience as a teacher and 

self-efficacy. Sampling weights were also included, and sampling error was estimated 

using balanced repeated replication (BRR) weights to account for and adjust for the multi-

stage, stratified, clustered nature of the sample. The results in Figures II.1.7 and II.1.8 of 

OECD (2020[2]) are displayed with marks indicating whether there was a positive and 

significant association (+) between job satisfaction and one of the predictors (after 
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controls), a non-significant association with a blank mark, or a negative association (-) if 

there was a statistically significant negative association. The raw regression coefficients 

associated are also available in supplementary tables. 

A major concern with the analytic approach used for the results in Figures II.1.7 and II.1.8 

is that the categorisation of the results as positive, no effect, or negative, provides little 

information regarding the substantive importance of the effect in terms of how strongly 

different the results are from no effect at all. This issue touches on the continuing discussion 

over null hypothesis significance testing (Wasserstein and Lazar, 2016[3]) and the fact that, 

with large sample sizes such as those in TALIS, significant but relatively trivial results 

could be reported. Instead, it would be useful to have more substantive information 

regarding the importance of the effect, and the approach taken in this report is to compute 

the probability that the obtained effect is different from zero and to rank countries on the 

size of those probabilities. It is important to note that presenting results in this fashion can 

only be achieved via a Bayesian analysis, as will be described in more detail below. 

Therefore, the purpose of this report is to demonstrate an alternative mode of reporting 

based on reanalysing the Figures II.1.7 and II.1.8 from the TALIS report from the 

perspective of Bayesian statistical inference (Gelman et al., 2014[4]; Kaplan, 

forthcoming[5]). 

The organisation of this report is as follows. In Section 2, we provide a brief overview of 

TALIS 2018. This is followed in Section 3 by a review of the key elements of Bayesian 

statistical inference that are relevant to this report. A more technical treatment of Bayesian 

inference is given in Kaplan (forthcoming[5]). In Section 4 we describe our analysis of the 

TALIS data as a special case of a so-called Bayesian hierarchical model, which 

incorporates the elements of multilevel modelling required for the proper analysis of data 

arising from complex sampling designs such as TALIS. Then, in Section 5 we present the 

steps of our reanalysis of Figures II.1.7 and II.1.8 in OECD (2020[2]). This will be followed 

in Sections 6 and 7 by the results of our reanalysis of teacher job satisfaction and teacher 

self-efficacy, respectively. We will display necessary diagnostic plots using data from the 

United States to demonstrate important aspects of Bayesian computation in Annex A. Also, 

we will provide both tables and figures of the estimates, as well as the probability of the 

obtained effects being different from zero, and then rank countries/economies by the sizes 

of these probabilities. We focus on only one analysis – namely the effect of participation 

in induction activities as it predicts teacher job satisfaction and teacher self-efficacy. Our 

reanalyses of the remaining predictors in Figures II.1.7 and II.1.8 are provided in Annex B 

and Annex C, respectively. Section 8 provides a proposed Bayesian workflow that can 

guide analyses of the type presented in this report, and Section 9 concludes with a 

discussion of the Bayesian advantage as it pertains to the analysis of international 

large-scale surveys (ILSA) data, as well as directions for future applications of Bayesian 

inference to ILSA data, particularly the problem of accounting for model uncertainty and 

prediction. 

The R codes used for the analyses can be accessed from: 

https://gitlab.algobank.oecd.org/talisanalysis/wps/bayesian_workflow. 

https://gitlab.algobank.oecd.org/talisanalysis/wps/bayesian_workflow
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2. Overview of TALIS 

In 2008, the OECD conducted the first cycle of TALIS. TALIS is an international, 

large-scale survey of teachers, school leaders and the learning environment in schools. The 

overarching goals of TALIS are to provide policy makers, educators, and other stakeholders 

with rigorous and detailed information around nine central themes. These have included: 

1) teachers’ instructional practices; 2) school leadership; 3) teachers’ professional 

practices; 4) teacher education and initial preparation; 5) teacher feedback and 

development; 6) school climate; 7) job satisfaction; 8) teacher human resource issues and 

stakeholder relations; and 9) teacher self-efficacy. 

2.1. Elements of the TALIS survey design 

The first cycle of TALIS was conducted in 2008, the second cycle was conducted in 2013, 

and the third cycle on which this report is based was conducted in 2018. The fourth cycle 

will be conducted in 2024. Across the cycles of TALIS, the survey design has remained 

more or less unchanged. The key features of the TALIS design have focused on: 1) the 

identification of an international population of teachers and school leaders of mainstream 

schools, here defined as those teachers and school leaders working primarily in lower 

secondary (ISCED 2) schools; 2) a target sample size of 200 schools per country; 

20 teachers and one school leader in each school; 3) a target response rate of 75% of the 

sampled schools, together with a 75% response rate from all sampled teachers in the 

country; 4) a target response rate of 75% of the sampled school leaders; 5) the construction 

of separate questionnaires for teachers and school leaders, each requiring between 45 and 

60 minutes to complete; 6) two modes of data collection: questionnaires completed on 

paper or online, and 7) consistent survey windows for Northern and Southern Hemisphere 

countries. 

2.2. TALIS reporting goals  

As TALIS is a cross-sectional survey of teachers’ and school leaders’ attitudes, beliefs and 

opinions, it cannot be used to draw causal inferences. Instead, the strength of TALIS lies 

in its ability to provide internationally comparable evidence focused specifically on the 

day-to-day working lives of teachers and school leaders as seen from their perspective. This 

information is further broken down by relevant contextual variables such as teachers’ 

gender, age and experience – and by schools’ characteristics – geographical location, 

school type and composition. In addition, with information from the 2008 and 2013 cycles, 

important trend information can be gleaned to help inform country level policy. This is 

accomplished by keeping many of the survey questions constant across the cycles.1 

 
1 We argue later in this report that past cycles of TALIS, as well as the trend indicators, do not 

provide as much information as possible given new statistical methodologies. 
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3. Preliminaries on Bayesian inference 

In this section, we provide a non-technical overview of Bayesian ideas. For a more 

technical review, see Gelman et al. (2014[4]) and Kaplan (forthcoming[5]). 

Bayesian statistics has long been overlooked in the formal quantitative methods training of 

social scientists. Typically, the only introduction that a student might have had to Bayesian 

ideas is a brief overview of Bayes’ theorem while studying probability in an introductory 

statistics class. This is not surprising. First, until recently, it was not feasible to conduct 

statistical modelling from a Bayesian perspective owing to its complexity and lack of 

available software. Second, Bayesian statistics addresses many of the problems associated 

with frequentist null hypothesis significance testing (Kaplan, forthcoming[5]; 

Wagenmakers, 2007[6]; Wasserstein and Lazar, 2016[3]), such as the methods applied to 

Figure II.1.7, and can, therefore, be controversial. We will use the term frequentist to 

describe the paradigm of statistics commonly used today, which also represents the 

counterpart to the Bayesian paradigm of statistics. Historically, however, Bayesian 

statistics predates frequentist statistics by about 150 years. 

3.1. Frequentist probability 

Following the discussion given in Kaplan (forthcoming[5]), most students and researchers 

in the social sciences were introduced to the axioms of probability by studying the 

properties of the coin toss or the dice roll. These studies address questions such as (1) What 

is the probability that the flip of a fair coin will return heads?; (2) What is the probability 

that the roll of two fair die will return a value of seven? To answer these questions requires 

enumerating the possible outcomes and then counting the number of times the event could 

occur. The probabilities of interest are obtained by dividing the number of times the event 

occurred by the number of possible outcomes - that is, the relative frequency of events. 

Before introducing Bayes’ theorem, it is useful to review the axioms of probability that 

have formed the basis of frequentist statistics. These axioms of can be attributed primarily 

to the work of Kolmogorov (1956[7]). 

Underlying frequentist statistics is the idea of the long-run frequency. An example of 

probability as long-run frequency concerns the dice roll. In this case, the number of possible 

outcomes of one roll of a fair die is six. If we wish to calculate the probability of rolling a 

two, then we simply obtain the ratio of the number of favourable outcomes (here there is 

only one favourable outcome), to the total possible number of outcomes (here six). Thus, 

the frequentist probability is 1/6 = 0.17. However, the frequentist probability of rolling a 

two is purely theoretical because, in practice, the die might not be truly fair, or the 

conditions of the toss might vary from trial to trial. Thus, the frequentist probability of 0.17, 

relates to the relative frequency of rolling a two in a very large (indeed infinite) and 

perfectly replicable number of dice rolls. 

Nevertheless, this purely theoretical nature of long-run frequency plays a crucial role in 

frequentist statistical practice. Indeed, the entire structure of Neyman-Pearson hypothesis 

testing and Fisherian statistics that was used in the TALIS reports is based on the 

conception of probability as long-run frequency. Our conclusions regarding null and 

alternative hypotheses presuppose the idea that we could conduct the same study (in our 

case TALIS) an infinite number of times under perfectly reproducible conditions. 

Moreover, the frequentist interpretation of confidence intervals also assumes a fixed 
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parameter with the confidence intervals varying over an infinitely large number of identical 

studies. 

3.2. Epistemic probability 

But there is another view of probability, and that is as subjective belief. Specifically, a 

modification of the Kolmogorov axioms was advanced by De Finetti (1974[8]; 1974[9]), who 

suggested replacing the (infinite) countable additivity axiom with finite additivity and also 

suggested treating probability as subjective.2 

The use of the term subjective is perhaps unfortunate, insofar as it promotes the idea of 

fuzzy, unscientific, reasoning. Lindley (2007[10]) relates the same concern and prefers the 

term personal probability to subjective probability. Howson and Urbach (2006[11]) adopt 

the less controversial term epistemic probability to reflect an individual’s greater or lesser 

degree of uncertainty about the problem at hand. Put another way, epistemic probability 

concerns our uncertainty about unknowns. 

3.3. Bayesian inference 

The goal of statistical inference is to obtain estimates of the unknown parameters, which 

we denote as 𝜃. For this report, the unknown parameters will be regression coefficients 

relating policy-relevant predictors to key outcomes in TALIS. The major difference 

between Bayesian statistical inference and frequentist statistical inference concerns the 

assumptions regarding the nature of 𝜃. In the frequentist tradition, the assumption is that 𝜃 

is unknown, but has a fixed value that we wish to estimate. Measures such as the standard 

error or the frequentist confidence interval provide an assessment of the uncertainty 

associated with hypothetical repeated sampling from a population. In Bayesian statistical 

inference, 𝜃 is also considered unknown, however, similar to the data, 𝜃 is viewed as a 

random variable possessing a prior probability distribution that encodes our assumptions 

about the true value of 𝜃 before having seen the data. For example, on the basis of prior 

studies and/or expert opinion, we may be quite certain that the value of a regression 

coefficient of interest is positive, but uncertain about the range of values the coefficient can 

take on. In another case, we may also be quite certain about not only the sign of the effect 

but also its spread. Because both the observed data, denoted as 𝑦, and the parameters 𝜃 are 

assumed to be random variables, probability theory allows us to model the joint probability 

of the parameters and the data as a function of the conditional distribution of the data given 

the parameters, and the prior distribution, namely: 

𝑝(𝜃, 𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃) (1) 

where 𝑝(𝜃, 𝑦) is the joint distribution of the parameters and the data, 𝑝(𝑦|𝜃) is the 

distribution of the data conditional on the parameters and represents the expression of the 

model, and 𝑝(𝜃) is the prior distribution; again, the device wherein we encode our 

assumptions about the unknown parameters before seeing the data. Bayes’ theorem (Bayes, 

1763[12]; Laplace, 1951[13]) is then defined as: 

𝑝(𝜃|𝑦) =
𝑝(𝜃, 𝑦)

𝑝(𝑦)
=

𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 (2) 

Where 𝑝(𝜃|𝑦) is referred to as the posterior distribution of the parameters 𝜃 given the 

observed data 𝑦 representing our updated knowledge about the parameters of interest after 

having encountered the model and the data and is equal to the data distribution 𝑝(𝑦|𝜃) 

 
2 A much more detailed set of axioms for subjective probability was advanced by Savage (1954[37]). 
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times the prior distribution of the parameters 𝑝(𝜃) normalised by 𝑝(𝑦) so that the posterior 

distribution sums (or integrates) to one. 

3.4. Prior distributions 

The general approach to considering the choice of a prior distribution on 𝜃 is based on how 

much information we believe we have prior to data collection and how precise we believe 

that information to be. The strength of Bayesian inference lies in its ability to incorporate 

our uncertainty about 𝜃 directly into our statistical models. 

3.4.1. Non-informative priors 

In some cases, we may not be in possession of enough prior information to aid in drawing 

posterior inferences. Or, from a policy perspective, it may be prudent to not reveal 

assumptions about effects of interest and, instead, let the data speak for itself. Regardless, 

from a Bayesian perspective, this real or assumed lack of information is still important to 

consider and incorporate into our statistical models (Kaplan, forthcoming[5]). 

The standard approach to quantifying a lack of information is to incorporate 

non-informative prior distributions into our analyses. In the case in which there is no prior 

knowledge to draw from, perhaps the most extreme non-informative prior distribution that 

can be used is the uniform distribution ranging from −∞ to +∞, and denoted as 

𝑈(−∞, +∞). The uniform distribution essentially signals that we believe that our 

parameter of interest can take on an infinite number of values, each of which is equally 

likely. The problem with this particular specification of the uniform prior is that it is not 

proper insofar as the distribution does not integrate to 1. However, this does not always 

lead to problems, and is more of a conceptual issue. Highly diffused priors such as the 

Gaussian distribution with a mean of zero and variance of ten, denoted as 𝒩(0,10), could 

also be used. 

3.4.2. Weakly informative priors 

Situated between non-informative and informative priors are weakly informative priors. 

Weakly informative priors are distributions that provide one with a method for 

incorporating less information than one actually has in a particular situation. Specifying 

weakly informative priors can be useful for many reasons. First, it is doubtful that one has 

complete ignorance of a problem for which a non-informative prior, such as the uniform 

distribution, is appropriate. Rather, it is likely that one can consider a more reasonable 

bound on the uniform prior, but without committing to much more information about the 

parameter. Second, weakly informative priors are very useful in stabilising the estimates of 

a model, particularly in cases of small sample sizes (Gelman, 2006[14]). Specifically, 

Bayesian inference can be computationally demanding and so, although one may have 

information about, say, higher level variance terms, such terms may not be substantively 

important, and/or they may be difficult to estimate, especially in small samples. Therefore, 

providing weakly informative prior information may help stabilise the analysis without 

impacting inferences. 

3.4.3. Informative priors 

Finally, it may be the case that, on the basis of previous research, expert opinion, or both, 

information can be brought to bear on a problem and be systematically incorporated into 

the prior distribution. Such priors are referred to as informative. Informative prior 

distributions require that the analyst commit to the shape of the distribution. For example, 

if a parameter of interest, such as a regression coefficient, is assumed to have a normal prior 
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distribution, then the analyst must commit to specifying the average value and the precision 

around that value. Given that informative priors are inherently subjective in nature, they 

can be quite incorrect. Fortunately, Bayesian theory provides numerous methods for 

assessing the sensitivity of results to the choice of prior distributions. 

3.5. Bayesian computation in brief 

As stated in the introduction, the key reason for the increased popularity of Bayesian 

methods in the social sciences has been the (re)discovery of numerical algorithms for 

estimating posterior distributions of the model parameters given the data. Prior to these 

developments, it was virtually impossible to derive summary measures of the posterior 

distribution, particularly for complex models with many parameters. The numerical 

algorithms that we will describe in this chapter involve Monte Carlo integration using 

Markov chains - also referred to as Markov chain Monte Carlo (MCMC) sampling. These 

algorithms have a rather long history, arising out of statistical physics and image analysis 

(Geman and Geman, 1984[15]; Metropolis N. et al., 1953[16]). For a nice introduction to the 

history of MCMC see Robert and Casella (2011[17]). 

Bayesian inference focuses on calculating summary statistics of the posterior distribution. 

For very simple problems, this can be handled analytically. However, for complex, 

high-dimensional problems involving multiple integrals, the task of analytically obtaining 

summary statistics can be virtually impossible. So, rather than attempting to analytically 

solve these high dimensional problems, we can instead use well-established mathematical 

computation methods to draw samples from a target distribution of interest (in our case the 

posterior distribution) and summarise the distribution formed by those samples. This is 

referred to as Monte Carlo integration. 

Often, we direct the algorithm to sample from multiple points in the posterior distribution. 

These are referred to as chains, and our goal is to ensure that the MCMC samples arising 

from each chain mix well and yield a good approximation to the true posterior distribution 

of each of the model parameters. In addition, the nature of MCMC algorithms is to initiate 

dependent draws from the posterior distribution with the goal that over the iterations, the 

draws become independent. This is important for monitoring the so-called effective sample 

size of the analysis. Strong autocorrelation over the iterations yields draws that are not 

independent and hence lead to lower effective sample sizes on which the posterior estimates 

are obtained. The converse is that lower autocorrelation indicates independent draws and 

effective sample sizes that are close to the actual number of draws requested of the 

algorithm. An approach to aiding in reducing autocorrelation is to calculate posterior 

statistics based on every 𝑡𝑡ℎ draw from the posterior distribution. This is called thinning. 

Given the computational complexity of MCMC, it is absolutely essential for Bayesian 

inference that the convergence of the MCMC algorithm be assessed. The importance of 

assessing convergence stems from the very nature of MCMC in that it is designed to 

converge to a distribution rather than to a point estimate. Because there is not a single 

adequate assessment of convergence, it is important to inspect a variety of diagnostics that 

examine varying aspects of convergence. Among these are: (a) trace plots for mixing, 

(b) autocorrelation plots to assess independence, (c) posterior probability distribution 

(density) plots for all parameters to assess mixing and convergence, (d) potential scale 

reduction factors to assess mixing and convergence, and (e) effective sample size to assess 

independence. Of these, we will concentrate primarily on the potential scale reduction 

factor (referred to as 𝑅ℎ𝑎𝑡), and the effective sample size (referred to as n_eff) as these two 

provide the most reliable information regarding the convergence of the algorithm. These 

diagnostics will be used in this report. 
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3.6. Summarising the posterior distribution 

Having obtained satisfactory convergence to the posterior distribution, the next step is to 

calculate point estimates and obtain relevant intervals. The expressions for point estimates 

and intervals of the posterior distribution come from expressions of conditional 

distributions generally. 

3.6.1. Posterior predictive checking 

A very natural way of evaluating the overall quality of a model is to examine how well the 

model fits the actual data. Examples of such approaches abound in frequentist statistics, 

often based on “badness-of-fit” measures. In the context of Bayesian statistics, the approach 

to examining how well a model fits the data is based on the notion of posterior predictive 

checking, and the accompanying posterior predictive p-value. An important philosophical 

defence of the use of posterior predictive checks can be found in Gelman and Shalizi 

(2012[18]). 

The general idea behind posterior predictive checking is that there should be little, if any, 

discrepancy between data generated by the model, and the actual data itself. Any deviation 

between the data generated from the model and the actual data implies model 

misspecification. 

In the Bayesian context, the approach to examining model fit and specification utilises the 

posterior predictive distribution of replicated data accounting for uncertainty via the priors 

that are placed on the model parameters. Thus, posterior predictive checking accounts for 

the uncertainty in the model parameters and the uncertainty in the data. 

As a means of assessing the fit of the model, posterior predictive checking implies that the 

replicated data should match the observed data quite closely if we are to conclude that the 

model fits the data. One approach to quantifying model fit in the context of posterior 

predictive checking is to calculate the posterior predictive p-value. If the model-generated 

data fit the actual data well, then any differences should be due to chance – meaning that 

the posterior p-value should be around 0.50. Any large deviations suggest model misfit that 

could stem from model misspecification (e.g. omitted variables, incorrect functional form), 

poorly specified priors, or both. 

3.6.2. Interval summaries of the posterior distribution 

One important consequence of viewing parameters probabilistically concerns the 

interpretation of uncertainty intervals. Recall that the frequentist confidence interval 

requires that we imagine a fixed parameter, say the population mean 𝜇. Then, we imagine 

an infinite number of repeated samples from the population characterised by 𝜇. For any 

given sample, we can obtain the sample mean �̅� and then form a 100(1 − 𝛼)% confidence 

interval. The correct frequentist interpretation is that 100(1 − 𝛼)% of the confidence 

intervals formed this way capture the true parameter 𝜇 under the null hypothesis. Notice 

that, from this perspective, the probability that the parameter is in the interval is either zero 

or one. 

In contrast, the Bayesian framework assumes that a parameter has a probability distribution. 

Sampling from the posterior distribution of the model parameters, we can obtain its 

quantiles. From the quantiles, we can directly obtain the probability that a parameter lies 

within a particular interval. So, for example, a 95% posterior probability interval (also 

referred to as a credible interval) would mean that the probability that the true value of the 
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parameter lies in the interval is 0.95. Notice that this is entirely different from the 

frequentist interpretation, and arguably aligns with common sense.3 

Symmetric intervals such as the 95% posterior probability interval are not the only interval 

summaries that can be obtained from the posterior distribution, and a major benefit of 

Bayesian inference is that any interval of substantive importance can be obtained directly 

from the posterior distribution through simple functions available in 𝑅. This is particularly 

noteworthy when trying to gauge just how much different an obtained estimated effect is 

from zero. That is, even if zero lies within the 95% credible interval, there may be a sizable 

difference between zero and the obtained effect in terms of the distribution of credible 

values. We present these probabilities in this report, but it should further be noted that the 

flexibility available in being able to summarise any aspect of the posterior distribution 

admits a much greater degree of nuance in the kinds of research questions one may ask. 

 
3 Interestingly, the Bayesian interpretation is often the one incorrectly ascribed to the frequentist 

interpretation of the confidence interval. 
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4. Analysis of TALIS data as a Bayesian hierarchical model 

A common feature of data collection in the social sciences is that units of analysis 

(e.g. students or employees) are nested in higher level organisational units (e.g. schools or 

companies, respectively). Indeed, in many instances, the substantive problem specifically 

concerns an understanding of the role that units at both levels play in explaining or 

predicting outcomes of interest. For example, the TALIS study deliberately samples 

schools (within a country) and then samples teachers within the sampled schools. Such data 

collection plans are generically referred to as clustered sampling designs. Data from 

clustered sampling designs are then collected at both levels for the purpose of 

understanding each level separately, but also to understand the inputs and processes of 

teacher and school level variables as they predict both school and teacher level outcomes. 

Higher levels of nesting are, of course, possible: e.g. teachers nested in schools, which, in 

turn, are nested in local educational authorities, such as school districts. 

It is probably without exaggeration to say that one of the most important contributions to 

the empirical analysis of data arising from such data collection efforts has been the 

development of so-called multilevel models. Original contributions to the theory of 

multilevel modelling for the social sciences can be found in Burstein (1980[19]), Goldstein 

(2011[20]), and Raudenbush and Bryk (2002[21]), among others. 

4.1. The intercepts and slopes as outcomes model 

For this report, we discuss the most general form of the multilevel model - the intercepts 

and slopes as outcomes model, with an example that will be presented below. Suppose that 

interest centres on reported job satisfaction of teachers in the United States. Denote 

𝑡3𝑗𝑜𝑏𝑠𝑎𝑖𝑗 as reported job satisfaction of teacher 𝑖 in school 𝑗. We may wish to model 

𝑡3𝑗𝑜𝑏𝑠𝑎𝑖𝑗 as a function of whether teacher 𝑖 took part in induction activities in school 𝑗, 

denoted as 𝑡𝑡3𝑔08𝑖𝑗. The intercepts and slopes as outcomes model can be written as: 

𝑡3𝑗𝑜𝑏𝑠𝑎𝑖𝑗 =  𝛽0𝑗 +  𝛽1𝑗 (𝑡𝑡3𝑔08)𝑖𝑗 + 𝑟𝑖𝑗 (3) 

where 𝛽0𝑗 is the intercept for school 𝑗, representing the average job satisfaction score for 

the school, 𝛽1𝑗 are the regression coefficients representing the relationship between teacher 

job satisfaction and career choice, which might vary over the 𝐽 schools, and 𝑟𝑖𝑗 is a residual 

term. Raudenbush and Bryk (2002[21]) have referred to the model in Equation (3) as the 

“level-1” model. 

Interest in multilevel regression models stems from the fact that we can model the intercepts 

and slopes as a function of school level predictors, which we will denote as 𝒛𝑗. For example, 

we could ask whether school average job satisfaction or the relationship between school 

average job satisfaction and first career choice can be predicted by whether the school is 

public or private. For the TALIS reports that we are reanalysing, school level effects were 

not included but, rather, the intercepts and slopes were allowed to simply vary across 

schools without an attempt to explain the variation. In this case, the so-called level-2 model 

can be written as: 

𝛽0𝑗 = 𝛾00  +  𝑢0𝑗 (4𝑎) 

𝛽1𝑗 =  𝛾10 +  𝑢1𝑗 (4𝑏) 
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where 𝛾00 is the grand mean of job satisfaction, 𝛾10 the grand mean of the job satisfaction 

and induction relationship, and 𝑢0𝑗 and 𝑢1𝑗 capture unmodeled between-school variation. 

To express Equations (3) and (4a) - (4b) as a Bayesian hierarchical model, we specify the 

following distributions for 𝑡3𝑗𝑜𝑏𝑠𝑎𝑖𝑗, 𝛽0𝑗, 𝛽1𝑗, 𝛾00, and 𝛾01. That is, 

𝑡3𝑗𝑜𝑏𝑠𝑎𝑖𝑗 ∼ 𝒩 [𝛽0𝑗 +  𝛽1𝑗(𝑡𝑡3𝑔08)𝑖𝑔, 𝜎𝑔
2] (5𝑎) 

𝛽0𝑗 ∼ 𝒩(𝛾00, 𝜏00
2 ) (5𝑏) 

𝛽1𝑗 ∼ 𝒩(𝛾10, 𝜏10
2 ) (5𝑐) 

𝛾00 ∼ 𝒩(𝜇00, 𝜔00
2 ) (5𝑑) 

𝛾10 ∼ 𝒩(𝜇10, 𝜔10
2 ) (5𝑒) 

 

To complete the hierarchical specification, prior distributions would need to be supplied 

for the variance terms, 𝜎𝑗
2, 𝜏00

2 , 𝜏10
2 , 𝜔00

2 , and 𝜔10
2 . Several reasonable choices of priors are 

available for the variance terms but, for this report, we chose a non-informative 

half-Cauchy distribution because it has been shown to be computational stable as a 

non-informative prior for variance terms (Gelman, 2006[14]; Kaplan, forthcoming[5]). 
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5. An example using TALIS 

The following section discusses the specifics of how analyses were conducted for this 

report. We begin by describing the TALIS sample and then move on to how we treat 

missing data and sampling weights. 

5.1. Sample 

The data used in these analyses originates from the 2018 cycle of TALIS, which includes 

48 countries and economies. TALIS focuses on teachers and school leaders in lower 

secondary education. TALIS follows a stratified two-stage probability sampling design. 

This means that teachers are randomly selected from the list of in-scope teachers for each 

of the randomly selected schools. 

5.2. Missing data 

Missing responses coded as “not reached” or responses that were otherwise omitted or 

deemed invalid were imputed using predictive mean matching (Rubin, 1986[22]). The 

essential idea behind predictive mean matching is that missing values are imputed by 

matching the predicted values from the observed data using a predictive mean metric to the 

predicted values using regression imputation. Then, the procedure uses the actual observed 

value for the imputation. That is, for each regression, there is a predicted value for the 

missing data as well as a predicted value for the observed data. The predicted value for the 

observed data is then matched to a predicted value of the missing data using, say, a nearest 

neighbour distance metric. Once the match is found, the actual observed value (rather than 

the predicted value) replaces the missing value. If more than one match is found, a random 

match is used. 

Although this process can be conducted only once to impute missing data, multiple draws 

of plausible values account for uncertainty surrounding a single imputed missing data point. 

The practice of multiple imputation fits in the Bayesian perspective, as parameters are 

assumed to take on a probability distribution instead of a singular fixed, but unknown, 

value. For the current analysis, ten predictive mean matching imputations were computed 

using the mice package in 𝑅 (van Buuren, 2012[23]). 

Due to the format of the TALIS teacher survey, several questions were not logically 

applicable to a given respondent due to their answers to previous questions. These missing 

patterns are not as easily imputable as the seemingly random missing responses previously 

discussed. For example, a teacher who indicated they never participated in any induction 

activities at their current school would not answer further questions asking for details about 

what kinds of induction activities they participated in. Here, missing responses for the 

following questions specifying their participation in activities were imputed to show they 

did not participate in that specific activity. For other questions where there was not a 

logically imputed response from not-applicable questions or questions that were not 

administered in certain countries, responses were excluded from the analysis. 

5.3. Sampling weights 

The use of weights is important because it allows researchers to conduct statistical analyses 

using non-representative samples that can be mathematically corrected to better represent 

the population of interest. With a survey such as TALIS, schools are randomly sampled in 
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a given country or economy, and teachers within those schools are sampled. These samples 

cannot be perfectly representative of the population of teachers in a given country, so the 

implementation of weights to counteract this is necessary. 

For this study, we use the final estimation weights, denoted as 𝑇𝐶𝐻𝑊𝐺𝑇ℎ𝑖𝑗, which were 

drawn from the original TALIS 2018 report. These weights are calculated as the product of 

design weights for schools, the design weight for teachers, and the three adjustment factors 

for teachers. However, preliminary analyses revealed that more stable convergence of the 

computing algorithm could be achieved through the use of normalised sampling weights. 

These normalised weights, denoted as 𝑁𝑜𝑟𝑚𝑊𝑔𝑡ℎ𝑖𝑗, were calculated for each participating 

teacher as the ratio of sample size 𝑛 to the total population 𝑁 multiplied by the final 

estimation weights 𝑇𝐶𝐻𝑊𝐺𝑇ℎ𝑖𝑗. The normalised weight can be written as:  

𝑁𝑜𝑟𝑚𝑊𝑔𝑡ℎ𝑖𝑗 =
𝑛

𝑁
∗ 𝑇𝐶𝐻𝑊𝐺𝑇ℎ𝑖𝑗 (6) 

where 𝑖 denotes each participating teacher for each participating school 𝑗 in explicit stratum 

ℎ for sample size 𝑛 and total population size of 𝑁. 
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6. Results for the analysis of teachers’ job satisfaction 

All analyses used the Stan-based software programme rstanarm (Goodrich et al., 2020[24]; 

Stan Development Team, 2021[25]; Stan Development Team, 2021[26]). We requested four 

chains with 5 000 iterations per chain. The algorithm uses half of the iterations as warm-

up, and we requested a thinning interval of 10. This leads to a total sample size of 1 000 

iterations. Annex A the convergence plots for the analysis of teacher job satisfaction and 

teacher self-efficacy from the United States sample only. The plots suggest some small 

concerns regarding convergence, but the Rhat and 𝑛_𝑒𝑓𝑓 values (Table 1) reveal adequate 

evidence of convergence. Despite this, the analysis shows a relatively poor fit to 

country-average teacher job satisfaction with a posterior predictive 𝑝-value of 0.67 

(Figure A A.4). Similar convergence plots and posterior predictive checks would be 

necessary for each country and for all analyses. 

Figure 1 displays the results of the regression of teacher job satisfaction on participation in 

any induction activities at a teacher’s current school, controlling for a teacher’s gender and 

years of experience as a teacher, ordered in terms of the size of the effect, labelled on the 

y-axis. The colour of the bubble represents the probability that the effect (i.e. the mean of 

the posterior distribution) is different from zero. We believe this plot (and subsequent plots 

and tables) conveys the idea that an effect could be deemed non-significant from a 

frequentist point of view (i.e. not significantly different from zero) but that the actual 

difference between the obtained effect and zero could be quite large. Note that, because the 

estimated effect is at the mean of the posterior distribution, these probabilities cannot 

exceed 0.5 in absolute value. 

Figure 1. Participation in any induction activities at current school and teachers’ job 

satisfaction 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

We see in Figure 1 that countries such as England (United Kingdom) and the United Arab 

Emirates showed larger mean estimated effects and had larger probabilities that the effect 

https://www.oecd.org/education/talis/talis-2018-data.htm
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is different than zero. This is perhaps not surprising; however, note that there are countries 

with smaller effects but which, nevertheless, have similarly large probabilities of the effect 

being greater than zero, such as Austria and Italy. We also observe more uncertainty in 

parameter estimates for countries with smaller estimated effects, such as in Slovenia and 

Türkiye. Bubble plots are provided for all of the regression analyses included in 

Figure II.1.7 of OECD (2020[2]) and can be found in Annex B. 

These bubble plots are designed to provide a quick glance at the results. More detailed 

results, including the 95% posterior probability interval and the precise probability that the 

effect of interest is different than zero can be found in Table 1, where we also present the 

results of the least-squares regression from OECD (2020[2]). 

Table 1. Participation in any induction activities predicting teachers’ job satisfaction 

Country/economy Effective 

sample size 

Rhat Posterior 

mean (sd) 

95% CI 𝑃(|𝑒𝑓𝑓𝑒𝑐𝑡|) ≠ 0 Original 

results1 2.5% 97.5% 

England (UK) 763 1  0.78 (0.21)  0.37 1.21 0.50 0.84 

United Arab Emirates  1 081 1  0.70 (0.10)  0.51 0.88 0.50 0.65 

Singapore 917 1  0.59 (0.16)  0.27 0.92 0.50 0.63 

Finland  947 1  0.54 (0.16)  0.23 0.88 0.50 0.48 

CABA (Argentina)2 955 1  0.53 (0.15)  0.23 0.82 0.50 0.54 

Chile 943 1  0.51 (0.19)  0.13 0.89 0.50 0.44 

Portugal 930 1  0.49 (0.13)  0.13 0.64 0.50 0.44 

Australia 935 1  0.45 (0.16)  0.14 0.76 0.50 0.52 

Korea 1 018 1  0.41 (0.16)  0.10 0.71 0.50 0.38 

Norway 1 016 1  0.41 (0.11)  0.17 0.62 0.50 0.39 

Estonia 971 1  0.40 (0.12)  0.17 0.64 0.50 0.38 

Shanghai (China) 1 031 1  0.40 (0.12)  0.17 0.63 0.50 0.43 

Brazil 1 072 1  0.37 (0.13)  0.12 0.65 0.50 0.46 

Hungary 1 015 1  0.37 (0.14)  0.10 0.63 0.50 0.34 

Romania 1 004 1  0.35 (0.11)  0.14 0.56 0.50 0.39 

Mexico 1 171 1  0.34 (0.10)  0.15 0.53 0.50 0.29 

Czech Republic 954 1  0.33 (0.11)  0.14 0.54 0.50 0.36 

Latvia 997 1  0.33 (0.12)  0.08 0.56 0.50 0.31 

Belgium 936 1  0.29 (0.10)  0.09 0.49 0.50 0.37 

Kazakhstan 1 056 1  0.23 (0.07)  0.10 0.36 0.50 0.27 

Alberta (Canada) 1 053 1  0.56 (0.24)  0.10 1.03 0.49 0.53 

South Africa 762 1  0.46 (0.19)  0.08 0.85 0.49 0.79 

France 607 1  0.40 (0.17)  0.06 0.73 0.49 0.43 

Sweden 712 1  0.39 (0.18)  0.03 0.73 0.49 0.38 

Colombia 1 074 1  0.27 (0.12)  0.05 0.51 0.49 0.26 

Spain 960 1  0.22 (0.09)  0.04 0.40 0.49 0.31 

New Zealand 1 010 1  0.38 (0.18)  0.02 0.73 0.48 0.34 

United States 1 048 1  0.37 (0.18)  0.03 0.72 0.48 0.34 

Israel 1 056 1  0.37 (0.17)  0.04 0.69 0.48 0.27 

Bulgaria 1 021 1  0.31 (0.15)  0.03 0.60 0.48 0.25 

Austria 1 101 1  0.20 (0.12)  -0.03 0.45 0.45 0.21 

Italy 1 101 1  0.21 (0.13)  -0.07 0.69 0.44 0.27 

Croatia 1 016 1  0.17 (0.13)  -0.08 0.43 0.40 0.21 

Viet Nam 932 1  0.12 (0.10)  -0.08 0.31 0.37 0.09 

Malta 984 1  0.19 (0.21)  -1.90 0.64 0.32 0.28 

Denmark 1 020 1  0.15 (0.17)  -0.20 0.52 0.31 0.27 
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Country/economy Effective 

sample size 

Rhat Posterior 

mean (sd) 

95% CI 𝑃(|𝑒𝑓𝑓𝑒𝑐𝑡|) ≠ 0 Original 

results1 2.5% 97.5% 

Netherlands 1 073 1  0.12 (0,15)  -0.17 0.32 0.29 0.13 

Saudi Arabia 986 1  0.15 (0.20)  -0.23 0.54 0.28 0.40 

Japan 903 1  0.12 (0.15)  -0.17 0.42 0.28 0.13 

Georgia 990 1  0.11 (0.18)  -0.22 0.46 0.23 0.08 

Slovak Republic 963 1  0.06 (0.11)  -0.16 0.27 0.19 0.10 

Slovenia 1 055 1  0.06 (0.14)  -0.20 0.33 0.18 0.04 

Lithuania 1 094 1  0.24 (0.10)  0.04 0.44 0.16 0.26 

Türkiye 1 030 1  0.07 (0.16)  -0.25 0.38 0.15 0.13 

Notes: 

1. Statistically significant results from OECD (2020[2]) are reported in bold. 

2. CABA (Argentina): Ciudad Autónoma de Buenos Aires, Argentina. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

An inspection of Table 1 reveals that, across the countries and economies, the effective 

sample size is nearly 1 000, indicating low autocorrelation. In addition, the Rhat values are 

1.0, indicating convergence of the algorithm. Further inspection of Table 1 provides insight 

into one of the main advantages of using Bayesian methods for the analysis and reporting 

of ILSA data, namely the capacity to examine the entire posterior distribution of the effect. 

Take, for example, Austria and Georgia. For Austria, we observe that zero is in the credible 

interval and its frequentist p-value also indicates that the effect is not statistically 

significant. Yet, the probability that the effect is greater than zero is 0.45. So, the p-value 

(and the frequentist confidence interval) would lead to a single decision of 

non-significance, and the credible interval would indicate that the zero is a plausible value. 

However, because we have the whole posterior distribution to work with, the actual 

probability that the effect is greater than zero is 0.45, which is arguably large. Contrast this 

with Georgia, where zero is in the credible interval but the effect is deemed statistically 

significant. However, the actual probability that the effect is greater than zero is small 

(0.22). 

Of course, these interpretations require substantive justification, but we argue that the 

presentation of posterior effect probabilities provide more nuance, and arguably more 

policy-relevant information for cross-country comparisons, while accounting for more 

uncertainty than conventional significance tests. It must be emphasised that this type of 

interpretation is only possible because of access to the entire posterior distribution of the 

effect – a consequence of Bayesian inference – and not possible via conventional 

significance testing. 

https://www.oecd.org/education/talis/talis-2018-data.htm
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7. Results for the analysis of teachers’ self-efficacy 

Annex A also displays the convergence diagnostic plots for the analysis of teacher 

self-efficacy for the United States that was discussed earlier. As with the analysis of teacher 

job satisfaction, the analysis of teacher self-efficacy also shows some issues of 

convergence, however, the Rhat and 𝑛_𝑒𝑓𝑓 (Table 2) indicate that convergence has been 

achieved. Again, on the basis of the posterior predictive p-value of 0.23, the model shows 

quite poor prediction of the United States’ average teacher self-efficacy (Figure A A.8). 

Figure 2 depicts the relationship between induction participation at a teacher’s current 

school and teacher self-efficacy, controlling for teachers’ gender and years of experience 

as a teacher. More detailed results can be found in Table 2. 

Figure 2. Participation in any induction activities at current school and teachers’ 

self-efficacy 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

Table 2. Participation in any induction activities predicting teachers’ self-efficacy 

Country/economy Effective 

sample size 

Rhat Posterior 

mean (sd) 

95% CI 𝑃(|𝑒𝑓𝑓𝑒𝑐𝑡|) ≠ 0 Original 

results1 

  2.5% 97.5% 

United Arab Emirates  959 1  0.49 (0.09)  0.33 0.66 0.50 0.48 

CABA (Argentina)2 900 1  0.47 (0.17)  0.13 0.77 0.50 0.40 

Spain 794 1  0.40 (0.09)  0.24 0.56 0.50 0.39 

Romania 1 007 1  0.34 (0.13)  0.10 0.59 0.50 0.37 

Chile 961 1  0.41 (0.18)  0.05 0.75 0.49 0.39 

Latvia 1 047 1  0.30 (0.12)  0.06 0.55 0.49 0.29 

Czech Republic 855 1  0.25 (0.09)  0.09 0.43 0.49 0.27 

Croatia 1 063 1  0.24 (0.10)  0.04 0.45 0.49 0.27 

https://www.oecd.org/education/talis/talis-2018-data.htm
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Country/economy Effective 

sample size 

Rhat Posterior 

mean (sd) 

95% CI 𝑃(|𝑒𝑓𝑓𝑒𝑐𝑡|) ≠ 0 Original 

results1 

  2.5% 97.5% 

Colombia 1 184 1  0.23 (0.10)  0.02 0.43 0.49 0.10 

Hungary 1 006 1  0.23 (0.10)  0.04 0.43 0.49 0.24 

Kazakhstan 941 1  0.20 (0.09)  0.02 0.36 0.49 0.28 

England (UK) 845 1  0.36 (0.18)  0.02 0.71 0.48 0.36 

Estonia 996 1  0.25 (0.12)  0.01 0.49 0.48 0.28 

Belgium 801 1  0.19 (0.09)  0.02 0.38 0.48 0.28 

Saudi Arabia 1 054 1  0.36 (0.19)  -0.01 0.73 0.47 0.53 

Shanghai (China) 1 060 1  0.31 (0.16)  0.01 0.62 0.47 0.31 

Türkiye 814 1  0.27 (0.14)  0.01 0.48 0.47 0.23 

Netherlands  934 1  0.22 (0.13)  -0.03 0.47 0.46 0.24 

Italy 883 1  0.20 (0.11)  -0.01 0.40 0.47 0.21 

France 1 069 1  0.25 (0.16)  -0.07 0.56 0.44 0.37 

Finland 1 084 1  0.23 (0.14)  -0.03 0.50 0.46 0.25 

Mexico 1 000 1  0.20 (0.12)  -0.03 0.44 0.46 0.22 

Portugal 996 1  0.12 (0.08)  -0.04 0.26 0.44 0.12 

Brazil 921 1  0.20 (0.14)  -0.07 0.47 0.43 0.18 

Sweden 1 044 1  0.19 (0.15)  -0.11 0.48 0.40 0.14 

Slovenia 1 013 1  0.17 (0.14)  -0.09 0.43 0.40 0.17 

Japan 932 1  -0.18 (0.14)  -0.46 0.09 0.40 -0.08 

Singapore 1 090 1  -0.26 (0.20)  -0.68 0.14 0.40 -0.19 

Australia 1 057 1  0.15 (0.13)  -0.10 0.41 0.37 0.13 

Viet Nam 997 1  0.14 (0.12)  -0.09 0.37 0.37 0.24 

South Africa 1 071 1  0.19 (0.18)  -0.15 0.56 0.35 0.01 

Israel 1 094 1  0.17 (0.17)  -0.19 0.53 0.33 0.24 

Slovak Republic 973 1  0.11 (0.12)  -0.13 0.36 0.32 0.14 

Denmark 838 1  0.10 (0.12)  -0.13 0.32 0.30 0.08 

Lithuania 917 1  0.10 (0.12)  -0.13 0.34 0.29 0.13 

Korea 914 1  0.12 (0.17)  -0.22 0.44 0.27 0.10 

Austria 1 045 1  -0.08 (0.11)  -0.29 0.14 0.26 -0.07 

Georgia 863 1  0.16 (0.23)  -0.29 0.57 0.25 0.03 

Norway 954 1  -0.04 (0.08)  -0.18 0.12 0.20 -0.04 

Alberta (Canada) 891 1  0.09 (0.21)  -0.29 0.51 0.18 0.03 

Malta 946 1  0.08 (0.20)  -0.32 0.48 0.16 0.21 

New Zealand 1 057 1  -0.06 (0.17)  -0.38 0.28 0.14 0.03 

United States 1 024 1  -0.04 (0.15)  -0.32 0.24 0.10 -0.22 

Bulgaria 930 1  -0.01 (0.11)  -0.23 0.22 0.03 -0.07 

Notes: 

1. Statistically significant results from OECD (2020[2]) are reported in bold. 

2. CABA (Argentina): Ciudad Autónoma de Buenos Aires, Argentina. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

An inspection of Table 2 also reveals that, across the countries/economies, the effective 

sample size is nearly 1 000, indicating low autocorrelation. In addition, the Rhat values are 

1.0, indicating convergence of the algorithm. Substantive interpretations for Table 2 follow 

the same logic as those discussed above for Table 1. Take, for example, Sweden. Here we 

find that zero is in the 95% credible interval and it is not statistically significant based on 

the frequentist p-value. However, the estimated probability that the effect being different 

from zero is 0.40, which might be considered relatively large. Again, this type of nuanced 

https://www.oecd.org/education/talis/talis-2018-data.htm
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interpretation of the results is only possible via Bayesian inference. Bubble plots for the 

remaining analyses for teacher self-efficacy can be found in Annex C. 
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8. A proposed Bayesian workflow for ILSA analyses 

Our analyses of teacher job satisfaction and teacher self-efficacy in Sections 6 and 7, 

respectively, suggest a possible workflow for a Bayesian analysis of large-scale educational 

data utilising non-informative or weakly informative priors. Our proposed workflow 

follows one proposed in Chapter 12 of Kaplan (forthcoming[5]) but, of course, other 

workflows are possible, depending on the extent of detail desired in reporting research 

results (Gelman et al., 2020[28]; OECD, 2020[2]). Moreover, there are certainly similarities 

between some the steps of this workflow and the steps that could be followed in a 

frequentist analysis of the same data. The steps of our workflow are as follows. 

1. Specify the outcome and set of predictors of interest, taking special care to note the 

assumptions regarding the distribution of the outcome – e.g. is the outcome 

assumed to be normally distributed, or does the outcome perhaps follow some type 

of non-normal distribution, such as the logistic or Poisson distribution. Specifying 

simple Bayesian models for the moments of the distribution (e.g. mean and 

variance) and examining the sensitivity of different prior choices can be quite useful 

and provide a sense of the probability model that generated the outcome. For this 

report, the outcome variables are scales and were treated as normally distributed. 

2. Specify the functional form of the relationship between the outcome and the 

predictors. For the analysis of ILSA data generally, this will most likely be a type 

of linear or generalised linear model, but more complex models are, of course, 

possible. Because this report is styled to represent the analyses that were conveyed 

in the original TALIS reports, we utilised linear models, treating each predictor 

separately. As discussed above, we fully recognise the biases that might occur in 

treating the predictors separately, but it is beyond the scope of this report to develop 

a full predictive model of the outcomes of interest. As an aside, it is important to 

note that there may be more than one model that could have plausibly generated the 

data. Keeping the problem of model uncertainty in the back of one’s mind is quite 

important, depending on the goals of the analysis. We discuss the issue of model 

uncertainty in the conclusions section of the report. 

3. Take note of the complexities of the data structure – e.g. are the data generated from 

a clustered sampling design? Are there sampling weights? Accounting for the 

complexities of the data structure can be handled by careful specification of a 

Bayesian hierarchical model. The use of sampling weights can be easily 

incorporated in Stan-based programs such as rstanarm (Goodrich et al., 2020[24]) 

and brms (Bürkner, 2017[29]), and we have utilised TALIS sampling weights for 

this report. 

4. Decide on the prior distributions for all parameters in the model. These priors will 

be either non-informative, weakly informative, informative, or a mix of all three. 

In the case of policy-oriented reports, such as the TALIS reports, it may be desirable 

to employ non-informative or weakly informative priors. In the former case, 

non-informative priors do not have the potential of reflecting the researcher’s 

personal opinions and instead let the data speak. The latter case of weakly 

informative priors can be used to help stabilise computations, but do not contain 

very much additional information. Because the goal of the present report is to 

mimic the reporting of a policy-relevant report on TALIS, we utilised 

non-informative or weakly informative priors. 
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5. After running the analysis, it is essential that the convergence criteria of the 

algorithm be checked. The basics of Bayesian computation, along with 

convergence criteria, can be found in Kaplan (forthcoming[5]). Note that results 

cannot be communicated unless there is overwhelming evidence from a variety of 

diagnostics that the algorithm converged. There are instances, however, where 

there may be contradictory evidence of convergence. For example, trace plots may 

appear fine, but Rhat values may be somewhat problematic. All attempts should be 

made to improve these diagnostics before communicating the results. In most cases, 

if the effective sample size (𝑛_𝑒𝑓𝑓) and Rhat values are reasonable, then one can 

proceed with communicating the results. This is because these diagnostics together 

capture autocorrelation, mixing, and trend in the iterations. 

6. Given evidence of computational convergence, and with the results in hand, 

posterior predictive checking is a necessary step in the Bayesian workflow. 

Posterior predictive checks can be set up to gauge overall model fit but, depending 

on the goals of the analysis, specific posterior predictive checks can be provided 

regarding fit of specific aspects of the posterior predictive distribution. Two 

examples include assessing whether the model fits the variance of the distribution, 

or whether the model fits specific quantiles of the distribution such as extreme 

values. 

7. Following posterior predictive checks, a full description of the posterior 

distributions of the model parameters would be provided, including the mean, 

standard deviation, and posterior intervals of interest. Additional posterior intervals 

of substantive interest should be provided, such as the probability that the effect is 

greater than (or less than, if negative) zero, or the probability that the effect lies 

between two values of substantive importance. For this report, we provided 

probabilities that the effects of interest are different from zero. 

8. Sensitivity analyses should be conducted, examining the impact of the choice of 

priors on the substantive results. Sensitivity analyses can include simply comparing 

the findings to the case where all priors are non-informative, or to the case where 

very small changes to the mean and variance of the prior distributions are made. 

Note again, that with large sample sizes such as those encountered in this report, it 

is likely that results will be robust to reasonable alternative prior distributions. 

9. Finally, though it was not discussed in this report, it may be important to examine 

model uncertainty. Addressing model uncertainty is particularly crucial if the goal 

of an analysis is to develop a model with optimal predictive performance, perhaps 

to be used for forecasting trends. One might also wish to investigate the extent of 

model uncertainty if the analyst is specifying a number of different models. 
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9. Conclusions 

It is beyond the scope this report to list all of the advantages of Bayesian methods over 

frequentist methods. A broader list of advantages can be found in Kaplan (forthcoming[5]) 

and Wagenmakers et al. (2008[30]), however we list a set of important advantages which 

have immediate relevance to this report, and to the analysis and reporting of ILSAs 

generally. 

9.1. Summarising the Bayesian advantage 

1. Bayesian inference is the only paradigm of statistics that allows for the quantification of 

epistemic uncertainty – that is, uncertainty regarding our knowledge about unknown 

parameters. This form of uncertainty is not only present in our knowledge of the parameters 

of interest, but also in the very models that are used to estimate those parameters. Central 

to Bayesian theory and practice is that the posterior probability intervals around parameter 

estimates are more accurate in the sense that these intervals will accurately reflect epistemic 

uncertainty, particularly in small sample size cases, and they will be similar to frequentist 

confidence intervals (though with an entirely different interpretation) in large sample size 

cases. Bayesian models will also demonstrate better predictive performance than 

frequentist models by accounting for uncertainty in both the parameters of models and the 

choice of models themselves, they are better calibrated to reality (Dawid, 1982[31]; Kaplan, 

2021[32]). 

2. Bayesian inference provides posterior predictive checks, which allow one to examine the 

fit of the model with reference to its predictive performance. For the two examples in this 

report, evidence for good predictive fit was lacking, which suggests that one should proceed 

with caution in interpreting the results. In the context of our analyses, this result is not 

surprising insofar as each predictor was taken one at a time, and the regression model was, 

no doubt, highly misspecified. Nevertheless, posterior predictive checking is an integral 

part of any Bayesian workflow. 

3. In large samples, Bayesian approaches and frequentist approaches will converge to very 

similar values, though their interpretations are different. As noted above, frequentist 

parameters are treated as fixed and only uncertainty due to sampling variability can be 

estimated through reference to the estimate’s standard error. Bayesian estimates are 

interpreted probabilistically, and this, arguably, provides a much richer interpretation than 

the simple decision of whether a parameter estimate is statistically significant or not. For 

this report, we highlighted how Bayesian estimates provide interesting probabilistic 

interpretations as we proceeded through the results. 

4. Related to the third point, perhaps the major advantage of Bayesian inference of relevance 

to the analysis and reporting of ILSA data is that the analyst can summarise the entire 

posterior distribution of the effect – a consequence of treating parameters as random. Thus, 

not only can one provide, say, a 95% posterior interval for the effect but, indeed, any 

interval of interest. In our analysis, we examined the probability that the effect is greater 

than zero. Additionally, we might wish to calculate the probability that the true effect lies 

between any two substantively important intervals. It is important to note that this kind of 

analysis is simply not possible in a frequentist setting. 
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9.2. What else can a Bayesian perspective offer? 

In Section 8, we laid out a proposed Bayesian workflow that could be used for the analysis 

of ILSA data, generally. Step 9 of that workflow discussed the possibility of assessing 

model uncertainty, particularly if the goal is to develop optimally predictive models for 

policy forecasting (Kaplan, 2021[32]; Kaplan and Huang, 2021[33]). Although not the focus 

of this report, we believe that a distinct advantage of the Bayesian perspective lies in its 

power to yield optimally predictive models under uncertainty. Three general methods can 

be employed for this task: (1) sparse regression models, (2) Bayesian model averaging, and 

(3), Bayesian stacking. In all three cases, the presumption is that a model is being 

considered that includes many predictor variables. 

9.2.1. Sparse regression modelling 

In the case of sparse regression modelling, the goal is variable selection, and the approach 

is to employ priors that shrink small effects close to zero, while leaving large effects 

relatively unchanged. Examples include the ridge prior, the lasso prior, and the horseshoe 

prior, to name only three. A fuller discussion of sparsity in statistical modelling can be 

found in Hastie, Tibshirani and Friedman (2009[34]) 

9.2.2. Bayesian model averaging 

The difficulty with sparse regression modelling is that, in the end, one is left with a single 

model that is often interpreted as the model the investigator had in mind all along (Hoeting 

et al., 1999[35]). This ignores the problem of model uncertainty that occurs when not 

knowing what the true data generating model might be. An approach that can be used to 

address this issue is Bayesian model averaging, a method that has been considered in the 

literature for decades and applied to many fields. 

The main idea behind Bayesian model averaging (BMA) is that if there are, say, q variables 

in a regression model, then there are 2𝑞 possible models that could have generated the 

outcome (not including interaction terms). Bayesian model averages searches across the 2𝑞 

models and measures the fit of each model given the data. These measures of fit are used 

as weights, and a weighted combination of the regression coefficients for each model 

appearing in the set are used to create a BMA-weighted average of regression coefficients. 

Theory and practice have found that, under certain important assumptions, a model using 

BMA-weighted averaged coefficients has better long-run predictive performance than any 

single model chosen by the researcher. For a review with applications to ILSAs, see Kaplan 

(2021[32]). An application of BMA to the United States’ National Assessment of 

Educational Progress (NAEP) trend data was given in Kaplan and Huang (2021[33]). 

9.2.3. Bayesian stacking 

An important but technical limitation of BMA concerns the fact that its use requires the 

researcher to believe that the true data generating model is one of the 2𝑞 models being 

explored by the method. That assumption is typically not likely to hold. To get around that 

problem, the method of Bayesian stacking holds promise. In Bayesian stacking, the 

researcher would specify a number of distinctly different models for the same outcome. 

These models could be based on policy or theoretical concerns, but in any case, the 

predictions from each model are obtained, and a mixture of the predictions are formed, 

where the mixture weights are based on the predictive quality of each model separately. 

Again, research suggests that Bayesian stacking performs at least as well, if not better than 

BMA in terms of predictive performance. A review of BMA and stacking with applications 

to the Programme for International Student Assessment (PISA) was given in Kaplan 
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(2021[32]). An application of BMA to the United States’ National Assessment of 

Educational Progress (NAEP) trend data was given in Kaplan and Huang (2021[33]). A 

review and extension of Bayesian stacking to multilevel models with applications to PISA 

can be found in Huang and Kaplan (2023[36]). 

To conclude, this report suggests an alternative approach to the analysis and reporting of 

TALIS data with relevance to other ILSAs. We attempted to stay close to the reporting 

style in OECD (2020[2]) while at the same time demonstrating key differences between the 

conventional significance testing approach in OECD (2020[2]) and the Bayesian alternative. 

Adopting the Bayesian alternative to analysis and reporting of TALIS, and ILSAs more 

generally, is not without some cost; perhaps, most importantly, considerable thought would 

need to be given regarding what constitutes substantively important effects. We recognise 

that this task is very difficult but maintain that it is still more beneficial to policy than 

simply providing an “up/down” significance test. Finally, we strongly recommend that 

additional consideration be given to predictive modelling described above. 
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Annex A. Convergence plots 

Figure A A.1. Analysis of teachers’ job satisfaction – trace plots 

 

Note: Trace plots for the model predicting teacher job satisfaction by participation in any induction activities 

at current school, United States sample. These plots should exhibit a clear rectangular horizontal band over the 

x-axis. These plots show some problems with the mixing of the chains. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A A.2. Analysis of teachers’ job satisfaction – autocorrelation plots 

 

Note: Autocorrelation plots for the model predicting teacher job satisfaction by participation in any induction 

activities at current school, United States sample. These plots should show a very high autocorrelation at the 

first lag and very small autocorrelations thereafter. These plots show very low autocorrelation signifying 

independent draws from the posterior distributions. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A A.3. Analysis of teachers’ job satisfaction – density plots 

 

Note: Posterior probability distribution (density) plots for the model predicting teacher job satisfaction by 

participation in any induction activities at current school, United States sample. These plots should exhibit more 

or less a bell-shaped curve. We note some small problems with the variance components. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A A.4. Analysis of teachers’ job satisfaction – posterior predictive checks plots 

 

Note: Posterior predictive check plots for the model predicting teacher job satisfaction by participation in any 

induction activities at current school (p = .65), United States sample. This plot should exhibit a bell-shaped 

curve with the test-statistic for the data (denoted by the solid black line) positioned at the centre of the 

distribution (0.50), indicating excellent fit. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A A.5. Analysis of teachers’ self-efficacy – trace plots 

 

Note: Trace plots for the model predicting teacher self-efficacy by participation in any induction activities at 

current school, United States sample. These plots should exhibit a clear rectangular horizontal band over the 

x-axis. These plots show some problems with the mixing of the chains. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A A.6. Analysis of teachers’ self-efficacy – autocorrelation plots 

 

Note: Autocorrelation plots for the model predicting teacher self-efficacy by participation in any induction 

activities at current school, United States sample. These plots should show a very high autocorrelation at the 

first lag and very small autocorrelations thereafter. These plots show very low autocorrelation signifying 

independent draws from the posterior distributions. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A A.7. Analysis of teachers’ self-efficacy – density plots 

 

Note: Posterior probability distribution (density) plots for the model predicting teacher self-efficacy by 

participation in any induction activities at current school, United States sample. These plots should exhibit more 

or less a bell-shaped curve. We note some small problems with the variance components. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A A.8. Analysis of teachers’ self-efficacy – posterior predictive checks plots 

 

Note: Posterior predictive check plots for the model predicting teacher self-efficacy by participation in any 

induction activities at current school (p = .20), United States sample. This plot should exhibit a bell-shaped 

curve with the test-statistic for the data (denoted by the solid black line) positioned at the centre of the 

distribution (0.50), indicating excellent fit. 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
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Annex B. Additional results for teachers’ job satisfaction 

Figure A B.1. Teaching as a first career choice 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

Figure A B.2. Induction at current school included team teaching with experienced 

teachers 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A B.3. Professional development activities had a positive impact on teaching 

practices 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

Figure A B.4. Teaching profession is valued in society 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A B.5. Index of workplace well-being and stress 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

Figure A B.6. Index of professional collaboration 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A B.7. Receiving impactful feedback 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

Figure A B.8. Index of autonomy in the target class 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
https://www.oecd.org/education/talis/talis-2018-data.htm
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Annex C. Additional results for teachers’ self-efficacy 

Figure A C.1. Years of experience as a teacher 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

Figure A C.2. Index of classroom disciplinary climate 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A C.3. Induction at current school included team teaching with experienced 

teachers 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

Figure A C.4. Professional development in the last 12 months had a positive impact on 

teaching practices 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A C.5. Index of workplace well-being and stress 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

Figure A C.6. Fixed-term contract: less than one school year 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
https://www.oecd.org/education/talis/talis-2018-data.htm
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Figure A C.7. Index of professional collaboration 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

Figure A C.8. Index of autonomy in the target class 

 

Source: OECD (2018[27]), TALIS 2018 Database, https://www.oecd.org/education/talis/talis-2018-data.htm 

(accessed on 28 July 2022). 

https://www.oecd.org/education/talis/talis-2018-data.htm
https://www.oecd.org/education/talis/talis-2018-data.htm
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