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ON THE QUANTIFICATION OF MODEL UNCERTAINTY: A BAYESIAN PERSPECTIVE
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Issues of model selection have dominated the theoretical and applied statistical literature for decades.
Model selection methods such as ridge regression, the lasso, and the elastic net have replaced ad hoc
methods such as stepwise regression as a means of model selection. In the end, however, these methods
lead to a single final model that is often taken to be the model considered ahead of time, thus ignoring
the uncertainty inherent in the search for a final model. One method that has enjoyed a long history of
theoretical developments and substantive applications, and that accounts directly for uncertainty in model
selection, is Bayesian model averaging (BMA). BMA addresses the problem of model selection by not
selecting a final model, but rather by averaging over a space of possible models that could have generated
the data. The purpose of this paper is to provide a detailed and up-to-date review of BMA with a focus on
its foundations in Bayesian decision theory and Bayesian predictive modeling. We consider the selection
of parameter and model priors as well as methods for evaluating predictions based on BMA. We also
consider important assumptions regarding BMA and extensions of model averaging methods to address
these assumptions, particularly the method of Bayesian stacking. Simple empirical examples are provided
and directions for future research relevant to psychometrics are discussed.
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Issues surrounding the specification of statistical models for prediction and explanation have
dominated the theoretical and applied statistical literature for decades. The underlying issue
has been one of the well-known bias-variance trade-off problem—namely that under-specified
models can lead to parameter bias, and over-specifiedmodels can lead to poor predictions in future
samples.Model selectionmethods such as ridge regression (Hoerl andKennard 1970;Hoerl 1985),
the lasso (Tibshirani 1996), the elastic net (Zou and Hastie 2005), and their Bayesian counterparts
(Hsiang 1975; Park and Casella 2008; Li and Lin 2010) among others, have been advocated as a
means of regularizingmodels to provide a balance between bias and variance. In the end, however,
these methods lead to a single final model that is often taken to be the model considered ahead of
time. The problem is that, in practice, model uncertainty often goes unnoticed, and the impact of
this uncertainty can be quite serious. Hoeting et al. (1999) wrote

Standard statistical practice ignores model uncertainty. Data analysts typically select
a model from some class of models and then proceed as if the selected model had
generated the data. This approach ignores the uncertainty in model selection, leading
to over-confident inferences and decisions that are more risky than one thinks they
are. (pg. 382)

Similar observations were made earlier by Leamer (1978, pg. 91) who noted that

...ambiguity over a model should dilute information about the regression coefficients,
since part of the evidence is spent to specify the model

and by Draper et al. (1987, pg. iii) who stated
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This [model selection] tends to underestimate Your actual uncertainty, with the result
that Your actions both inferentially in science and predictively in decision-making,
are not sufficiently conservative. [Capitalization authors.]

TheBayesian framework recognizes thatmodel selection is conducted under pervasive uncer-
tainty insofar as a particular model is typically chosen among a set of competingmodels that could
also have generated the data. Although a number of methods exist in the Bayesian literature to aid
in improving model prediction, including sensitivity analyses via posterior predictive checking
(Gelman et al. 1996) as well as the Bayesian regularization methods cited earlier, in the end, a
single model is chosen for prediction and/or explanatory purposes. As the quotes by Hoeting et
al. (1999), Leamer (1978), and Draper et al. (1987) suggest, it is risky to settle on a single model.
Rather, it may be prudent to draw predictive strength through combining models. Arguably, the
most popular approach for addressing the problem of model uncertainty from a Bayesian per-
spective lies in the method of Bayesian model averaging (BMA).

The purpose of this paper is to provide a detailed reviewof themethodology ofBMA.A review
of the extant literature on BMA reveals interesting connections to Bayesian decision theory and
Bayesian predictive modeling. As such, we will draw on a number of seminal sources addressing
the problemofmodel uncertainty quantification from aBayesian perspective. In particular, wewill
draw heavily from Bernardo and Smith (2000), Vehtari and Ojanen (2012), Piironen and Vehtari
(2017), and Draper (2013) with respect to the idea of belief models and Bayesian decision theory;
Bernardo and Smith (2000), Clyde and Iversen (2013), and Clarke and Clarke (2018) with respect
to so-called M-frameworks; Raftery and his colleagues (Madigan and Raftery 1994; Hoeting et
al. 1999; Raftery et al. 1997) with respect to historical developments in BMA and algorithms; and
Clyde and Iversen (2013), Vehtari et al. (2019), and Yao et al. (2018) with respect to Bayesian
stacking as means of addressing certain assumptions underlying BMA.

The organization of this paper is as follows. In the next section,we discussBayesian predictive
modeling as embedded in Bayesian decision theory. Here we discuss the concepts of expected
utility and expected loss, and frame these ideas within the use of information-theoretic methods
for judging decisions. We show that the action which optimizes the expected utility is the BMA
solution. Next, we discuss the statistical elements of BMA including connections to Bayes factors,
computation considerations, and the problem parameter and model priors. This is followed by
a simple example of BMA in linear regression modeling and a comparison of results based on
different parameter and model prior settings. This is then followed by a presentation of methods
for evaluating the quality of a solution based on BMA, including the use of scoring rules and
how they tie back to the information-theoretic concepts discussed earlier in the paper. We then
discuss the main problem associated with conventional BMA—namely that BMA assumes that
the true data generating model is contained in the set of models that are being averaged and
demonstrate the method of Bayesian stacking that directly deals with this assumption. A simple
example of Bayesian stacking is provided. The paper concludes with a discussion of challenges
and opportunities associated with considering model uncertainty in psychometrics and the social
and behavioral sciences more generally.

1. Elements of Predictive Modeling

This overview of BMA is situated in the Bayesian predictivist framework discussed in
Bernardo and Smith (2000). An excellent review of Bayesian predictive modeling can be also
found in Vehtari and Ojanen (2012), and we will borrow notation from their paper.

Arguably, the overarching goal of statistics is prediction. In other words, a key characteristic
of statistics is to develop accurate predictive models, and all other things being equal, a given
model is to be preferred over other competing models if it provides better predictions of what
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actually occurred (Dawid 1984). Indeed, it is hard feel confident about inferences drawn from a
model that does a poor job of predicting the extant data. The problem, however, is how to develop
accurate predictive models, and, importantly, how to evaluate their accuracy. The approach to
developing accurate predictive models discussed in this review is BMA, and the evaluation of
BMA-based analyses is best situated in the context of Bayesian decision theory.

Bayesian decision theory (see, e.g., Good 1952; Lindley 1991; Berger 2013) provides a
natural and intuitive approach to evaluating Bayesian predictive models generally, and BMA in
particular. Specifically, as will be expanded on below, Bayesian decision theory casts the problem
of predictive evaluation in the context of maximizing the expected utility of a model—that is, the
benefit that is accrued from using a particular model to predict future observations. The greater the
expected utility, the better the model is at predictive performance in comparison to other models.

1.1. Fixing Notation and Concepts

Let D = {yi , xi }ni=1 be a set of data assumed to be fixed in the Bayesian sense, where
yi is an outcome of interest and xi is a (possibly vector-valued) set of predictors. Further, let
(ỹ, x̃) be future observations of the outcome and the set of predictors, respectively. Further, let
M = {Mk}Kk=1 represent a set of models specified to provide a prediction of the outcome ỹ, and
let Mk represent a specific chosen model.

The elements of Bayesian decision theory that we adopt in this paper have been described by
Bernardo and Smith (2000) and Vehtari and Ojanen (2012) among many others. These elements
consist of (a) an unknown state of the world denoted as ω ∈ �, (b) an action a ∈ A, where A
is the action space, (c) a utility function u(a, ω) : A × � → R that rewards an action a when
the state of the world is realized as ω, and (d) p(ω|D) representing one’s current belief about the
state of world conditional on observing the data, D.

To provide a context for these ideas, and in anticipation of our empirical example, consider
the problem of predicting reading performance measured on 15-year-old students in the USA
using data from the OECD Program on International Student Assessment (PISA) (OECD 2017).
In line with Bernardo and Smith (2000), Lindley (1991), Vehtari and Ojanen (2012) and Berger
(2013) and the notation given previously, (a) the states of the world correspond to the future
observations of reading literacy ỹ ∈ Y , (b) the action a ∈ A is the actual prediction of those
future observations, (c) the utility function u(a, ỹ) defines the reward attached to the prediction,
and (d) p(ỹ|D, M∗) is a posterior predictive distribution that encodes our belief about the future
reading literacy observations conditional on the data, D, and a belief model, M∗ (described later).

1.2. Utility Functions for Evaluating Predictions

The goal of predictive modeling is to optimize the utility of taking an action a. A number of
utility functions exist, but common utility functions rest on the negative quadratic loss function

u(a, ỹ) = −(ỹ − a)2. (1)

The optimal action a∗ is the one that maximizes the posterior expected utility, written as (see
Clyde and Iversen 2013)

a∗ = arg sup
a∈A

∫
�

u(ω, a)p(ω|D)dω (2)

The idea here is to take an action a that maximizes the utility u when the future observation is
ỹ. Clyde and Iversen (2013) show that the optimal decision obtains when a∗ = E(ỹ|D), which
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is the posterior predictive mean of ỹ given the data D. Under the assumption that the true model
exists and is among the set of models under consideration, this can be expressed as

E(ỹ|D) =
K∑

k=1

E(ỹ|Mk, D)p(Mk |D) =
K∑

k=1

p(Mj |D) ˆ̃yMk (3)

where ˆ̃yMk is the posterior predictive mean of ỹ under Mk . The expression in (3) is Bayesian
model averaging.

It is important to note that when considering the selection of a single model, one might be
tempted to choose the model with the highest posterior model probability (PMP) p(Mk |D). In the
case of only two models, the model with the largest PMP will be the closest to the BMA solution.
However, for more than two models, Clyde and Iversen (2013) point out that the model closest
to the BMA solution might not be the one with the largest PMP.

2. Bayesian Model Averaging

In a complex real-world setting such as the one we find ourselves in when trying to develop
a predictive model of reading literacy, substantive discussions would suggest that many different
models could be entertained as reasonable models of reading literacy. In this case, we agree with
Clyde and Iversen (2013) that to maximize our utility it would be best to average over the space
of possible models via BMA.

Bayesian model averaging has had a long history of theoretical developments and practical
applications. Early work by Leamer (1978) laid the foundation for BMA. Fundamental theoretical
work on BMA was conducted in the mid-1990s by Madigan and his colleagues (e.g., Madigan
and Raftery 1994; Raftery et al. 1997; Hoeting et al. 1999). Additional theoretical work was
conducted by Clyde (1999, 2003). Draper (1995) discussed howmodel uncertainty can arise even
in the context of experimental designs, andKass andRaftery (1995) provided a review of Bayesian
model averaging and the costs of ignoring model uncertainty. Reviews of the general problem of
model uncertainty can be found in Clyde and George (2004) and more recently in Steel (2020)
with a focus on economics. A review of Bayesian model averaging with a focus on psychology
can be found in Hinne et al. (2020).

Practical applications and developments of Bayesian model averaging can be found across a
wide variety of domains. A perusal of the extant literature shows applications of Bayesian model
averaging to economics (e.g., Fernández et al. 2001b), political science (e.g., Montgomery and
Nyhan2010), bioinformatics of gene express (e.g., Yeung et al. 2005), weather forecasting (e.g.,
Raftery et al. 2005; Sloughter et al. 2013), propensity score analysis (Kaplan and Chen 2014),
structural equation modeling (Kaplan and Lee 2015), missing data (Kaplan and Yavuz 2019),
probabilistic forecasting with large-scale assessment data (Kaplan & Huang, under review).

The popularity of BMAacrossmany different disciplines is due to the fact that BMA is known
to provide better out-of-sample predictive performance than any other model under consideration
as measured by the logarithmic scoring rule (Raftery and Zheng 2003). In addition, Bayesian
model averaging has been implemented in the R software programs BMA (Raftery et al. 2015),
BMS (Zeugner and Feldkircher 2015), and BAS (Clyde 2017). These packages are quite general,
allowing Bayesian model averaging over linear models, generalized linear models, and survival
models, with flexible handling of parameter and model priors.
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2.1. Statistical Specification of BMA

Following Madigan and Raftery (1994), consider a quantity of interest such as a future
observation. Again, denoting this quantity as ỹ, our goal is to obtain an optimal prediction of ỹ
the sense that the utility of predicting ỹ is maximized. Next, consider a set of competing models
M = {Mk}Kk=1 that are not necessarily nested. The posterior distribution of ỹ given data D can
be written as a mixture distribution,

p(ỹ|D) =
K∑

k=1

p(ỹ|Mk)p(Mk |D), (4)

where p(Mk |D) is the posterior probability of model Mk written as

p(Mk |D) = p(D|Mk)p(Mk)∑K
l=1 p(D|Ml)p(Ml)

, (5)

where the first term in the numerator on the right-hand side of (5) is the probability of the data
given model k, also referred to as the integrated likelihood written as

p(y|Mk) =
∫

p(y|θk, Mk)p(θk |Mk)dθk, (6)

where p(θk |Mk) is the prior distribution of the parameters θk undermodelMk (Raftery et al. 1997).
The posterior model probabilities can be considered mixing weights associated with the mixture
distribution given in (4) (Clyde and Iversen 2013). The second term p(Mk) on the right-hand side
of (5) is the prior model probability for model k, allowing each model to have a different prior
probability based on past performance of that model or a belief regarding which of the models
might be the true model. The denominator of (5) ensures that p(Mk |y) integrates to 1.0, as long
as the true model is in the set of models under consideration. We will defer the discussion of a
true model until later and then explicitly deal with the case where the true model is not in the set
of models under consideration.

2.2. Connections to Bayes Factors

An important feature of (5) is that p(Mk |y) captures the posterior uncertainty that a given
model is the true model and this uncertainty will likely vary across models. Herein lies the
problem of model selection; given the choice of a particular model, the analyst effectively ignores
the uncertainty in other models that could have generated the data. Of course, (5) could be used
as a method for model selection by simply choosing the model with the largest posterior model
probability. However, model uncertainty is still being ignored because, often in practice, the
posterior probability of this model will not be 1.0 which is assumed if one were to select a single
model and act as though that was the model the analyst had in mind all along.

Yet another common approach for model selection is the Bayes factor which provides a way
to quantify the odds that the data favor one model over another (Kass and Raftery 1995). A key
benefit of Bayes factors is that models do not have to be nested. To motivate the Bayes factors,
consider two competing models, denoted as Mk and Ml , which could be nested within a larger
space of alternative models. Let θk and θl be the two parameter vectors associated with these
two models. These could be two regression models with a different number of variables, or two
structural equation models specifying very different directions of mediating effects. The goal is to
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develop a quantity that expresses the extent to which the data support Mk over Ml . One quantity
could be the posterior odds of Mk over Ml , expressed as

p(Mk |D)

p(Ml |D)
= p(D|Mk)

p(D|Ml)
×

[
p(Mk)

p(Ml)

]
. (7)

The first term on the right-hand side of (7) is the ratio of two integrated likelihoods. This ratio is
referred to as the Bayes factor for Mk over Ml , denoted here as BFkl . In words, our prior opinion
regarding the odds of Mk over Ml , given by p(Mk)/p(Ml), is weighted by our consideration of
the data, given by p(D|Mk)/p(D|Ml).

A connection between the Bayes factor in (7) and the posterior model probability in (5)
has been pointed by others (see, e.g., Clyde 1999). Specifically, when examining more than two
models, and assuming equal prior odds, then the Bayes factor for Mk over Ml can be written as

BFkl = p(Mk |D)

p(Ml |D)
. (8)

Assuming that we fix the first model Ml as the baseline model, (5) can be re-expressed as

p(Mk |D) = BFk1 p(Mk)∑K
l=1 BFl1 p(Ml)

(9)

2.3. Computational Considerations

As pointed out by Hoeting et al. (1999), BMA can be difficult to implement. In particular,
they note that the number of terms in (4) can be quite large, the corresponding integrals can be
hard to compute, the specification of p(Mk)may not be straightforward, and choosing the class of
models to average over is also challenging. To address the problem of computing (6) the Laplace
method, which has been used productively for the computation of Bayes factors (Kass and Raftery
1995), can be used and this will lead to a simple BIC approximation under certain circumstances
(see Tierney and Kadane 1986; Raftery 1996). The problem of reducing the overall number of
models that one could incorporate in the summation of (4) has led to two interesting solutions.
One solution is based on the so-called Occam’s window criterion (Madigan and Raftery 1994)
and the other is based on a Metropolis sampler referred to as Markov chain Monte Carlo Model
composition (MC3) (Madigan and York 1995)

2.3.1. Occam’sWindow Tomotivate the idea behindOccam’swindow, consider the problem of
finding the best subset of predictors in a linear regression model. Following closely the discussion
given in Raftery et al. (1997) we would initially start with very large number of predictors, but
the goal would be to pare this to a smaller number of predictors that provide accurate predictions.
As noted in the earlier quote by Hoeting et al. (1999), the concern in drawing inferences from
a single best model is that the choice of a single set of predictors ignores uncertainty in model
selection. Occam’s window provides an approach to BMA that reduces the subset of models
under consideration, but instead of settling on a final “best” model, we instead integrate over the
parameters of the smaller set with weights reflecting the posterior uncertainty in each model.

The algorithmproceeds as follows (Raftery et al. 1997). In the initial step, the space of possible
models is initially reduced by implementing the so-called “leaps and bounds” algorithmdeveloped
by Furnival and Wilson (1974) in the context of best subsets regression (see also Raftery 1995).
This initial step can substantially reduce the number of models, after which Occam’s window
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can then be employed. The general idea is that models are eliminated from (4) if they predict the
data less well than the model that provides the best predictions based on a caliper value C chosen
in advance by the analyst. The caliper C sets the width of Occam’s window. Formally, consider
again a set of models {Mk}Kk=1. Then, the set A′ is defined as

A′ =
{
Mk : maxl{p(Ml |y)}

p(Mk |y) ≤ C

}
. (10)

In words, (10) compares the model with the largest posterior model probability, maxl{p(Ml |y)},
to a givenmodel p(Mk |y). If the ratio in (10) is greater than the chosen valueC , then it is discarded
from the set A′ of models to be included in the model averaging. Notice that the set of models
contained in A′ is based on Bayes factor values.

The setA′ now containsmodels to be considered formodel averaging. In the second, optional,
step, models are discarded from A′ if they receive less support from the data than simpler sub-
models. Formally, models are further excluded from (4) if they belong to the set

B =
{
Mk : ∃Ml ∈ A′, Ml ⊂ Mk,

p(Ml |y)
p(Mk |y) > 1

}
. (11)

Again, in words (11) states that there exists a model Ml within the setA′ and where Ml is simpler
than Mk . If a complex model receives less support from the data than a simpler sub-model—again
based on the Bayes factor—then it is excluded from B. Notice that the second step corresponds
to the principle of Occam’s razor (Madigan and Raftery 1994).

With step 1 and step 2, the problem of reducing the size of the model space for BMA is
simplified by replacing (4) with

p(ỹ|y,A) =
∑
Mk∈A

p(ỹ|Mk, y)p(Mk |y,A), (12)

In otherwords,models under consideration for BMAare those that are inA′ but not inB. Formally,
A = A′ \ B.

Madigan and Raftery (1994) outline an approach to the choice between two models to be
considered for Bayesian model averaging. To make the approach clear, consider the case of just
two models M1 and M0, where M0 is the simpler of the two models. This could be the case where
M0 contains fewer predictors than M1 in a regression analysis. In terms of posterior odds, if the
odds are positive, indicating support for M0, then we reject M1. If the posterior odds is large
and negative, then we reject M0 in favor of M1. Finally, if the posterior odds lies in between
the pre-set criterion, then both models are retained. For linear regression models, the leaps and
bounds algorithm combined with Occam’s window is available in the BICREG option in the R
program BMA (Raftery et al. 2015).

2.3.2. Markov Chain Monte Carlo Model Composition Markov chain Monte Carlo model
composition (MC3) is based on the Metropolis–Hastings algorithm (see, e.g., Gilks et al. 1996)
and is also designed to reduce the space of possible models that can be explored via Bayesian
model averaging. Following Hoeting et al. (1999), the MC3 algorithm proceeds as follows. First,
let M represent the space of models of interest; in the case of linear regression this would be
the space of all possible combinations of variables. Next, the theory behind MCMC allows us to
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construct a Markov chain {M(t), t = 1, 2, . . . , } which converges to the posterior distribution of
model k, that is, p(Mk |y).

The manner in which models are retained under MC3 is as follows. First, for any given model
currently explored by the Markov chain, we can define a neighborhood for that model which
includes one more variable and one less variable than the current model. So, for example, if our
model has four predictors x1, x2, x3 and x4, and theMarkov chain is currently examining themodel
with x2 and x3, then the neighborhood of this model would include {x2}, {x3}, {x2, x3, x4}, and
{x1, x2, x3}. Now, a transition matrix is formed such that moving from the current model M to
a new model M ′ has probability zero if M ′ is not in the neighborhood of M and has a constant
probability ifM ′ is in the neighborhood ofM . Themodel M ′ is then accepted for model averaging
with probability

min

{
1,

pr(M ′|y)
pr(M |y)

}
, (13)

otherwise, the chain stays in model M .

2.4. Model and Parameter Priors

One of the key steps when implementing BMA is to choose priors for both the parameters
of the model and the model space itself. Discussions of the choice of parameter and model priors
can be found in Fernández et al. (2001a); Liang et al. (2008); Eicher et al. (2011); Feldkircher
and Zeugner (2009), with applications found in Fernández et al. (2001a) and Kaplan and Huang
(under review). A large number of choices for model and parameter priors are implemented in
the R software program BMS (Zeugner and Feldkircher 2015). This section discusses the extant
choices of parameter and model priors, following closely the discussion given in Kaplan and
Huang (under review).

2.4.1. Parameter Priors The choice of parameter priors available in the extant BMA software
rests on variations of Zellner’s g-prior (Zellner 1986). Specifically, Zellner introduced a natural-
conjugate Normal-Gamma g-prior for regression coefficients β under the normal linear regression
model, written as,

yi = x ′
iβ + ε, (14)

where ε is i.i.d. N (0, σ 2). For a give model, say Mk , Zellner’s g-prior can be written as

βk |σ 2, Mk, g ∼ N

(
0, σ 2g

(
x ′
k xk

)−1
)

. (15)

Feldkircher and Zeugner (2009) have argued for using the g-prior for two reasons: its consistency
in asymptotically uncovering the true model, and its role as a penalty term for model size.

The g-prior has been the subject of some criticism. In particular, Feldkircher and Zeugner
(2009) have pointed out that the particular choice of g can have a very large impact on posterior
inferences drawn from BMA. In particular, small values of g can yield a posterior mass that
is spread out across many models while large values of g can yield a posterior mass that is
concentrated on fewer models. Feldkircher and Zeugner (2009) use the term supermodel effect
to describe how values of g impact the posterior statistics including posterior model probabilities
(PMPs) and posterior inclusion probabilities (PIPs).

To account for the supermodel effect researchers (Fernández et al. 2001a; Liang et al. 2008;
Eicher et al. 2011; Feldkircher and Zeugner 2009) have proposed alternative priors based on
extensions of the work of Zellner (1986). Generally speaking, these alternatives can be divided
into two categories: fixed priors and flexible priors. Fernández et al. (2001a) recommended using
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benchmark priors which belong to the class of fixed priors when sample sizes are large. Liang et
al. (2008) introduced mixtures of g-priors to address the inconsistency when using fixed priors
and showed its advantages compared to other default priors. Instead of only employing model-
dependent priors, Feldkircher and Zeugner (2009) proposed a hyper-g-prior that “let the data
choose,” thus reducing the sensitivity of the prior choice of the g-prior on the posterior mass. In a
detailed study, Eicher et al. (2011) compared twelve candidate default priors and concluded that
the unit information prior (UIP) combined with the uniform model prior outperformed the other
choices.

2.4.2. FixedParameter Priors The set of fixed priors that are available inBMS are (see Zeugner
and Feldkircher 2015):

• Unit Information Prior: g = N . This is a typical default prior. Liang et al. (2008) sug-
gested using UIP in combination with the uniform model prior to yield the best predictive
performance.

• Risk Inflation Criterion Prior (RIC): g = Q2, where Q is the number of predictors.
Foster and George (1994) showed that the selection of the model with the highest PMP is
equivalent to selecting the model with the highest RIC as long as g = Q2.

• Benchmark risk inflation criterion (BRIC): g = max(N , Q2). This is a combination of the
UIP and RIC. When N ≤ Q2, Fernández et al. (2001a) recommend using g = Q2; When
N > Q2, use g = N in the variable selection context.

• HannanandQuinnPriors: g = log(N )3: This prior is basedon theHannan–Quinn criterion
for model selection. Hannan and Quinn (1979) advocated to use HQ criteria = 3 for large
N .

2.4.3. Flexible Parameter Priors The set of flexible priors are (see Zeugner & Feldkircher,
2015):

• Local Empirical Bayes: gk = argmax(0, Fk − 1), where Fk = R2
k (N−Qk−1)

(1−R2
k )Qk

; Fk is the F-

statistic and R2
k is the regression coefficient of determination for model Mk . This approach

estimates g separately for each model with maximum likelihood methods based on the
observed data (George and Foster 2000; Liang et al. 2008; Hansen and Yu 2001).

• Hyper-g priors: This family of priors was proposed for data-dependent shrinkage. Fol-
lowing Feldkircher and Zeugner (2009), the hyper-g prior is a Beta prior on the shrinkage
factor g

1+g , that is p
( g
1+g

) ∼ Beta(1, α
2 − 1), with E

( g
1+g

) = 2
α
. Instead of eliciting g

directly, the hyper-g prior requires the elicitation of the hyperparameter α ∈ (2,∞). As α

approaches 2, the prior distribution on the shrinkage factor g
1+g will be close to 1; while

for α = 4, the prior distribution on the shrinkage factor will be uniform distributed. In the
context of noisy data, the hyper-g prior will distribute posterior model probabilities more
uniformly across the model space. In the case of low noise in the data, the hyper-g prior
will be concentrated on a few models, and perhaps even more concentrated than in the
fixed prior case with large g (Feldkircher and Zeugner 2009).

2.4.4. Model Priors Here we discuss threemodel priors that are available in theBMS program:
(a) the uniform model prior, (b) the binomial model prior, and (c) the Beta-binomial model prior.

• Uniform model prior: The uniform model prior is a common default prior for Bayesian
model averaging. Specifically, if there are Q predictors, then the prior on the space of
models is 2−Q . The difficulty with the uniform model prior was pointed out by Zeugner
and Feldkircher (2015) who noted that the uniform model prior implies that the expected
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model size is
∑Q

q=0

(Q
q

)
q2−Q = Q/2. However, the distribution of model sizes is not

even—there are more models of size 2 or 5, then there are of size 1 or 6. The result is
that the uniform model prior actually places more mass on intermediate size models. A
demonstration of the impact of this problem is given in Zeugner and Feldkircher (2015).

• Binomial model prior: To address the problem with the uniform model prior, Zeugner
and Feldkircher (2015) proposed placing a fixed inclusion probability on each predictor
in the model, denoted as θ . Then, for model k, the prior probability for a model of size
q is p(Mk) = θqk (1 − θ)Q−qm . Notice that the expected model size, say m̄, is Qθ , and
thus the analysts prior expected model size is m̄. Moreover, if θ = .5, then the binomial
model prior reduces to the uniform model prior. In practice, this suggests that choosing
θ < .5 weights the posterior mass toward smaller models, and visa versa (Zeugner and
Feldkircher 2015).

• Beta-binomial model prior: The binomial prior discussed above suffers from the fact that
the inclusion probability θ is fixed. Following Ley and Steel (2009), greater flexibility is
provided by treating θ as random. A logical choice for the probability distribution of θ

is the Beta distribution with hyperparameters a, b > 0, viz., θ ∼ Beta(a, b). Under the
Beta-binomial prior the first and second moments of the model size m̄ are,

E(m̄) = a

a + b
Q, (16)

var(m̄) = ab(a + b + Q)

(a + b)2(a + b + 1)
Q. (17)

3. Evaluating Bayesian Model Averaging

With such a wide variety of choices available for parameter and model priors, it is important
to have a method for evaluating the impact of these choices when applying BMA to substantive
problems. Given that the utility of BMA lies in its optimal predictive performance, a reasonable
method for evaluation should be based on measures that assess predictive performance—referred
to as scoring rules.

3.1. Strictly Proper Scoring Rules

Scoring rules provide ameasure of the accuracyof probabilistic predictions (or synonymously,
forecasts), and a prediction can be said to be “well-calibrated” if the assigned probability of the
outcome match the actual proportion of times that the outcome occurred (Dawid 1982).1

A scoring rule is a utility function (Gneiting and Raftery 2007), and the goal of the forecaster
is to be honest and provide a forecast that will maximize the utility. One can consider scoring rules
from a subjectivist Bayesian perspective. Here, Winkler (1996) quotes Finetti (1962, pg. 359)

The scoring rule is constructed according to the basic idea that the resulting device
should oblige each participant to express his true feelings, because any departure from
his own personal probability results in a diminution of his own average score as he
sees it.

Because scoring rules only require the stated probabilities and realized outcomes, they can
be developed for ex-post or ex-ante probability evaluations. However, as suggested by Winkler
(1996), the ex-ante perspective of probability evaluation should lead us to consider strictly proper

1Scoring rules should be distinguished from scoring functions. The former describe rules for predictive distributions
while the later describe rules for point predictions, and include variants of squared error.
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scoring rules because these rules are maximized if and only if the forecaster is honest in reporting
their scores.

Following the discussion and notation given in Winkler (1996, see also; Jose et al. 2008),
let p represent the forecaster’s subjective probability distribution of an outcome of interest, let
r represent the forecaster’s reported forecast probability, and let ei represent the probability
distribution that assigns probability one if the event i occurs and probability zero for all other
events. Then, a scoring rule, denoted as S(r,p), provides a score S(r, ei ) if the event occurs. The
expected score obtained when the forecaster reports r when their true distribution is p is

S(r,p) =
∑
i

pi S(r, ei ) (18)

The scoring rule is strictly proper if S(p,p) ≥ S(r,p) for every r and pwith equality when r = p
(Jose et al. 2008, pg. 1147).

A large number of scoring rules have been reviewed in the literature (see, e.g., Winkler 1996;
Bernardo and Smith 2000; Jose et al. 2008; Merkle and Steyvers 2013; Gneiting and Raftery
2007). Here, however, we highlight two related strictly proper scoring rules that are commonly
used to evaluate predictions arising from Bayesian model averaging: the log predictive density
score, and the Kullback–Leibler divergence score (see, e.g., Fernández et al. 2001b; Hoeting et
al. 1999; Kaplan and Yavuz 2019; Kaplan and Huang, under review, for examples).

3.1.1. The Log Predictive Density Score The log predictive density score (LPS) (Good 1952;
Bernardo and Smith 2000) can be written as

−
∑
i

log
[
p(ỹi |x, y, x̃i )

]
(19)

where, for example, ỹi is the predictive density for i th person, x and y represent the model
information for the remaining individuals, and x̃i is the information on the predictors for individual
i . The model with the lowest log predictive score is deemed best in terms of long-run predictive
performance.

3.1.2. Kullback–Leibler Divergence Score Closely related to the log-predictive score is the
Kullback–Leibler Divergence (KLD) score (also referred to as relative entropy (Kullback and
Leibler 1951; Kullback 1959, 1987). Here we consider two distributions, p(y) and g(y|θ), where
p(y) could be the distribution of observed reading literacy scores, and g(y|θ) could be the pre-
diction of these reading scores based on a model. The KLD between these two distributions can
be written as

KLD( f, g) =
∫

p(y)log

(
p(y)

g(y|θ)

)
dy (20)

where KLD( f, g) is the information lost when g(y|θ) is used to approximate p(y). For example,
the actual reading outcome scores might be compared to the predicted outcome using Bayesian
model averaging along with different choices of model and parameter priors. The model with the
lowest KLD measure is deemed best in the sense that the information lost when approximating
the actual reading outcome distribution with the distribution predicted on the basis of the model
is lowest.

The LPS and KLD scoring rules are applicable to continuous outcomes and we will focus on
these two in our example below. However, it should be noted that BMA can be applied to binary
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outcomes, and here, a popular scoring rule that is based on quadratic loss is the Brier score (Brier
1950). Following the notation above, the Brier score can be defined as

− (‖ei − p‖2)2 (21)

where the forecast p estimates an indicator vector of an event e. For example, pmay represent the
forecast probability of rain on a given day, and ei represents the realization of the event scored
1/0 should rain occur on that day or not. The Brier score penalizes the forecaster in proportion to
the squared Euclidean distance between the forecast and the event (Jose et al. 2008, p. 1148)

4. A Simple Example of BMA

This example will draw on reading literacy data obtained from the Program for International
Student Assessment (PISA). Launched in 2000 by the Organization for Economic Cooperation
and Development, PISA is a triennial international survey that aims to evaluate education systems
worldwide by testing the skills and knowledge of 15-year-old students. In 2018, 600,000 students,
statistically representative of 32 million 15-year-old students in 79 countries and economies, took
an internationally agreed-upon two-hour test. Students were assessed in science, mathematics,
reading, collaborative problem solving, and financial literacy. PISA is arguably themost important
policy-relevant international survey that is currently operating (OECD 2002).

The benefit of developing optimally predictive models for large-scale assessments such as
PISA is to recognize that these assessments can be used tomonitor progress toward internationally
agreed-upon educational goals such as the United Nations (UN) adopted the Sustainable Devel-
opment Goals (SDGs). Also, as educational systems around the world face new challenges due to
the COVID-19 pandemic, developing optimally predictive models may help identify the long-run
impact of this unprecedented health crisis on global education.

Following the overview in Kaplan and Kuger (2016), the sampling framework for PISA
follows a two-stage stratified sample design. Each country/economy provides a list of all “PISA-
eligible” schools, and this list constitutes the sampling frame. Schools are then sampled from this
frame with sampling probabilities that are proportional to the size of the school, with the size
being a function of the estimated number of PISA-eligible students in the school. The second
stage of the design requires sampling students within the sampled schools. A target cluster size
of 35 students within schools was desired, though for some countries, this target cluster size was
negotiable.

We will focus on the reading literacy results from PISA 2018. The method of assessment for
PISA follows closely the spiraling design and plausible value methodologies originally developed
for National Assessment of Educational Progress. (see, e.g., OECD 2017) In addition to these so-
called “cognitive outcomes,” policymakers and researchers alike have begun to focus increasing
attention on the non-academic contextual aspects of schooling. Context questionnaires provide
important variables for models predicting cognitive outcomes and these variables have become
important outcomes in their own right—often referred to as “non-cognitive outcomes” (see, e.g.,
Heckman and Kautz 2012). PISA also assesses these non-cognitive outcomes via a one-half hour
internationally agreed-upon context questionnaire (see Kuger et al. 2016). The list of variables
used in this example are given in Table 1.

For this example, we use the software package BMS (Zeugner and Feldkircher 2015) which
implements the so-called Birth/Death algorithm as a default for conducting MC3. It is beyond
the scope of this paper to describe the BD algorithm or other choices of algorithms in the BMS
program. See Zeugner and Feldkircher (2015) for more detail.

The analysis steps for this example are as follows:
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Table 1.
PISA 2018 predictors of reading literacy.

Variable name Variable label

FEMALE Sex (1 = Female)
ESCS Index of economic, social, and cultural status
METASUM Meta-cognition: summarising
PERFEED Perceived feedback
HOMEPOS Home possessions (WLE)a

ADAPTIVE Adaptive instruction (WLE)
TEACHINT Perceived teacher’s interest
ICTRES ICT resources (WLE)
JOYREAD Joy/Like reading
ATTLNACT Attitude towards school: learning activities
COMPETE Competitiveness
WORKMAST Work mastery
GFOFAIL General fear of failure
SWBP Subjective well-being: positive affect
MASTGOAL Mastery goal orientation
BELONG Subjective well-being: sense of belonging to school (WLE)
SCREADCOMP Perception of reading competence
SCREADDIFF Perception of reading difficulty (WLE)
PISADIFF Perception of difficulty of the PISA test
PV1READ First plausible value reading score (outcome variable)b

aWeighted likelihood estimates. See OECD (2018) for more details.
bPlausible values. See OECD (2018) for more details.

1. We begin by implementing BMA with default unit information priors for the model
parameters and the uniform prior on the model space. We will outline the major compo-
nents of the results including the posteriormodel probabilities and the posterior inclusion
probabilities.

2. We next examine the results under different combinations of parameter andmodel priors
available in BMS and compare results using the LPS and KLD.

4.1. BMA Results

The Bayesian model averaging results under unit information priors for model parameters
and the uniform prior for the model space are shown in Tables 2 and 3. It should be noted that
the results under different choices of parameter and model priors demonstrate some sensitivity to
the choice of parameter and model priors and these results are available on the author’s website
(http://bmer.wceruw.org/index.html). We note that there are 19 predictors and thus 219 = 524288
models in the full space of models to be visited. Table 2 presents a summary of the birth/death
algorithm used to implement MC3 in BMS. We find that the algorithm only visited 471 models
(0.09%) out of the total model space; however, these models accounted for 100% of the posterior
model mass.2 The column labeled “Avg # predictors” shows that across all of the models explored
by the algorithm, the average number of predictors was 11.8 out of 19.

In the second row of Table 2 we present the posterior model probabilities (PMPs) associated
with the top five models out of the 471 models explored by the algorithm. It is important to note

2This percentage is obtained by summing over the PMPs for all models explored by the algorithm and dividing by
the total number of those models.

http://bmer.wceruw.org/index.html
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Table 2.
Summary of birth/death algorithm and top posterior model probabilities.

Algorithm summary Modelspace 2K Models visited % visited % Topmodels Avg. # predictors
524288 471 0.09 100 11.8

PMPs for top five models Model 1 Model 2 Model 3 Model 4 Model 5
0.35 0.20 0.06 0.04 0.03

Table 3.
Summary of BMA with unit information parameter priors and uniform model priors.

Predictor PIP Post. Coef. Post. SD Cond. Pos. Sign

ESCS 1.00 18.97 1.30 1.00
METASUM 1.00 27.99 1.29 1.00
TEACHINT 1.00 12.53 1.51 1.00
JOYREAD 1.00 10.33 1.32 1.00
GFOFAIL 1.00 11.06 1.21 1.00
MASTGOAL 1.00 − 13.34 1.50 0.00
SCREADCOMP 1.00 10.13 1.49 1.00
PISADIFF 1.00 − 29.71 1.46 0.00
PERFEED 0.98 − 5.00 1.55 0.00
SWBP 0.87 − 3.95 1.92 0.00
WORKMAST 0.86 4.28 2.16 1.00
FEMALE 0.64 5.14 4.37 1.00
ADAPTIVE 0.12 0.45 1.31 1.00
SCREADDIFF 0.08 − 0.19 0.78 0.00
COMPETE 0.07 0.19 0.79 1.00
BELONG 0.05 − 0.15 0.72 0.00
HOMEPOS 0.02 0.02 0.29 1.00
ICTRES 0.01 − 0.02 0.23 0.00
ATTLNACT 0.00 0.00 0.09 1.00

that Model 1 would also be associated with the lowest Bayesian information criterion. Hence,
on the basis of the low PMP for Model 1 (0.35) we can see that selecting Model 1 and acting as
though this is themodel we considered ahead of time, considerably underestimates the uncertainty
in our model choice. Moreover, as Clyde and Iversen (2013) remind us, this model might not be
the one closest to the BMA solution.

The results of the BMA are shown in Table 3. The column labeled “PIP” shows the posterior
inclusion probabilities for each variable, referring to the proportion of times the variable appeared
in the models visited by the algorithm. For example, the PIP for ESCS is 1.00, meaning that across
all the models selected by the algorithm, ESCS appeared in 100% of the models. In contrast,
ATTLNACT only appears in 0.09% of the models visited by the algorithm. The PIP thus provides
a different perspective on variable importance. The columns labeled “Post Mean” and “Post SD”
are the posterior estimates of the regression coefficients and their posterior standard deviations,
respectively. The column labeled “Cond. Pos. Sign” refers to the probability that the sign of the
respective regression coefficient is positive conditional on its inclusion in the model. We find, for
example, that the sign of ESCS is positive in 100% of the models in which ESCS appears. By
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contrast, the probability that the sign of the PISADIFF effect positive is zero, meaning that in
100% of the models visited by the algorithm, the sign of PISADIFF is negative.3

We find that the first 12 predictors (ESCS thru GENDER) have relatively high PIPs. The
majority of these predictors have PIPs of 1.0 indicating their importance. It is also interesting
to note that these predictors contain a mix of demographic measures (e.g., ESCS, GENDER),
attitudes/perceptions (e.g., TEACHINT, JOYREAD, SCREADCOMP) and cognitive strategies
involved in reading (e.g., METASUM).

4.2. Comparison of Parameter and Model Priors

Table 4 presents the results based on comparing LPS and KLD values for different parameter
priors under the fixed prior setting (upper half) and flexible prior setting (lower half), respectively.
Owing to the large-sample size, the findings show relative robustness to the choice of parameter
and model priors.

5. True Models, Belief Models, and M-Frameworks

Earlier, our discussion made mention of belief models and true models, and a perusal of
the extant literature on model averaging reveals a distinction between a so-called actual belief
model (sometimes referred to as a Bayesian belief model), M∗, and a true model, denoted as MT .
Unfortunately, there does not appear to be a consensus about the meaning of belief models or true
models, and in some cases, they are viewed as roughly the same thing. For example, Bernardo
and Smith (2000) introduced the idea of the actual belief model but seem to be describing it
as the true model, and in fact labeled the actual belief model as MT , suggesting that M∗ is the
true but unknown data generating model This position appears to be held by Clyde and Iversen
(2013) who adopt a similar notation and seem to use the terms “belief model” and “true model”
interchangeably.

In contrast, Vehtari and Ojanen (2012) suggest that M∗ is different from MT and is something
that we have access to insofar as it derived from what we have learned from our encounter with
data. For our example, M∗ would be the result of what has been learned from the construction and
criticism of a substantive model of reading literacy. That is, if (a) one has specified a reasonable
probability model for the reading literacy outcome, (b) one has access to a rich enough set of
policy-relevant predictors of reading literacy, (c) all of the important prior uncertainties have been
captured, and (d) themodel has withstood criticisms, say in the form of posterior predictive checks
(Gelman et al. 1996), then this model is M∗. Regarding MT , Vehtari and Ojanen (2012, p. 155)
suggest that “the properties of the true model are specified by the modeller a priori, and they are
not learned from the data properties.” Vehtari and Ojanen (2012) view the specification of MT in
very general terms, such as an i.i.d assumption regarding the outcome of interest.

With respect to model averaging, the distinction betweenM∗ andMT is important in practice.
First, BMA assumes that MT ∈ M. If that assumption does not hold, then conventional BMA
does notmake sense because the priors on themodel space are elicited to reflect the analyst’s belief
about the existence of the true model within the full set of models under consideration. Second,
as noted by Vehtari and Ojanen (2012), the process of model averaging begins with assuming
the existence of a true model that must be approximated from the data, and this approximation is
often based on an actual belief model that the researcher implicitly holds. Moreover, when using
BMA software such as BMA or BMS, an intital model must be specified to initiate the search
through the model space. The question that arises is whether this initial model is M∗ or MT . It

3The probabilities listed under the Cond. Pos. Sign results will often range from zero to one, but for these results, it
appears that all 471 models show clarity with respect to the sign of the posterior coefficients.
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does not seem reasonable that this model is MT , if by MT we mean some general probability
model for the outcome, not conditional on any covariates. Rather, this initial model is much more
akin to what is meant by M∗, having perhaps resulted from giving careful consideration to an
initial model based on past research, expert opinion, and so forth.

To clarify terminology, we prefer the following set of distinctions. First, there is a true model
MT that we do not fully know, except in the case of computer simulation studies (Clarke and
Clarke 2018), and it may be a highly complex process associated with many covariates in perhaps
complicated non-linear and structural relationships. Second, M∗ is our best, or most convenient,
approximation to MT and forms the empirical launching point for model averaging. Finally, the
goal of model averaging is to start with M∗ and locate a model Mk that is as close to MT as
possible with “closeness” defined in terms of an index such as the Kullback–Leibler divergence
(Kullback and Leibler 1951; Kullback 1959, 1987).

Our discussion of belief models and true models is necessary in order to address a critical
problem when conducting BMA in practice—namely whether it is reasonable to assume that
MT ∈ M. If we assume that MT is in the space of models under consideration, this is referred to
as theM-closed framework, introduced by Bernardo and Smith (2000) and further discussed in
Clyde and Iversen (2013).

As implied earlier, theM-closed framework for BMAmay be especially difficult to warrant
in the social and behavioral sciences. Nevertheless, as pointed out by Bernardo and Smith (2000),
there may be cases in which it is reasonable to act as though there is a true model, keeping
in mind that Bernardo and Smith (2000) seem to suggest that MT is what we are referring to
here as M∗. For example, we may wish to act as though M-closed holds when a model has
demonstrated good predictive capabilities under a wide variety of situations, but that under a
new situation, new uncertainties arise. Taking our example of the prediction of reading literacy,
an analyst typically would specify a set of variables that cover the range of what theory and
past analyses have suggested are important predictors of reading competencies—predictors such
(a) as measures of socio-demographics, (b) measures of teacher practices in support of reading
literacy, (c) perceptions of classroom and school environments, including instructional resources,
and (d) student attitudes and dispositions toward reading. In this example, Bayesian analyses
from prior relevant studies such as PISA 2009 (the last reading cycle of PISA) (OECD 2009),
might serve to provide informative priors for the analysis of reading data from PISA 2018. Given
policy and research papers that derive from the analyses of PISA 2018, it may be reasonable
to specify an initial belief model, M∗. However, now the analyst might recognize that there is
uncertainty in that choice of M∗ and wish to address that uncertainty using BMA to optimize the
prediction of reading competencies for future cycles of PISA. Such uncertainties may be due to
applying a model estimated on one PISA country to another. Or, changes in educational policies
and practices due to the COVID-19 pandemic may render much greater uncertainty to a model
that may have worked well in the past. As long as the analyst is comfortable assigning model
priors, then the M-closed framework can be adopted. Nevertheless, the truth or falsity of the
M-closed framework notwithstanding, it is important to reiterate that conventional BMA takes
place under the M-closed framework and, indeed, readily available BMA software typically
employ a non-informative prior to the space of models as a default, with the idea that the true
model lies in the model space.

5.1. Model Averaging in theM-Complete Framework

With the M-closed assumption unlikely to hold in practice, we are faced with the problem of
how to obtain the benefits of model averaging with respect to predictive accuracy. One approach
would be to create a list of simpler “proxy” linear models, {Mk}Kk=1 specified for clarity of
communication and ease of analysis (Bernardo and Smith 2000). Each of these models would be
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evaluated in light of the true model. This is referred to as theM-complete framework (Bernardo
and Smith 2000). UnderM−complete, BMAwould not, in principle, be conducted as it does not
make sense to place a discrete prior on the model space when one does not believe that MT ∈ M.
Instead, as suggested by Clyde and Iversen (2013), Yao et al. (2018), and Vehtari and Ojanen
(2012) one simply selects the model Mk ∈ M that maximizes expected utility with respect to
predictive distributions. However, this suggests that a single model is being used for predictive
purposes with the result that model uncertainty is again not being addressed.

More recently, Clarke andClarke (2018) discussed the idea thatM-complete could constitute
a range of inaccessibility to MT , and that methods such as BMA could be justified under M −
complete insofar as the model priors would encode ones belief as to how good an approximation
a given model is to MT under an M − closed problem. In any event, modeling under the M −
complete framework does not provide an approach to directly addressing the problem of model
uncertainty, when M − closed is hard to maintain.

5.2. Model Averaging in theM-Open Framework

If it is difficult to warrant model priors as required under M-closed, and if selecting a single
model under M-complete that maximizes expected utility is not satisfactory, then we need an
approach that allows for model averaging without the need to assume that MT ∈ M. This is
referred to as the M-open framework (Bernardo and Smith 2000). An example of an M-open
problem is in specifying a set of regression models with different choices of predictors. These
different regressionmodelswould represent reasonable alternative beliefmodels. Then, rather than
using posterior model probabilities as weights, each model would yield a separate score without
presuming the existence of a true model underlying any of the separate models. These models
would be combined using their scores as weights, and the resulting predictive distribution would
be obtained. This type of model averaging in the M-open framework describes the methodology
of Bayesian stacking which we consider next.

6. Bayesian Stacking

Themethod of stackingwas originally developed in themachine learning literature byWolpert
(1992) and Breiman (1996) and brought into the Bayesian paradigm by Iversen (2013). The basic
idea behind stacking is to enumerate a set of K (k = 1, 2, . . . K ) models and then create a
weighted combination of their predictions. Returning to our reading literacy example, we can
specify a set of candidate (belief) models of reading literacy as

y = fk(x) + ε (22)

were fk are different models of the reading literacy outcome— e.g., some models may include
only demographic predictors, others may include various combinations of attitudes and behaviors
related to reading literacy. Predictions from these models are then combined (stacked) as (see Le
and Clarke 2017)

ỹ =
K∑

k=1

ŵk f̂k(x), (23)

where f̂k estimates fk . The weights, ŵk (ŵ1, ŵ2, . . . ŵK ) are obtained as

ŵ = argmin
w

n∑
i=1

(
yi −

K∑
k=1

wk f̂k,−i (xi )

)2

(24)
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where f̂k,−i (xi ) is an estimate of fk based on n − 1 observations, leaving the i th observation out.

6.1. Leave-One-Out Cross-Validation

We see from (24) that a method is needed to estimate fk based on n− 1 observations leaving
the i th observation out, and the most common approach is referred to as leave-one-out cross
validation. Leave-one-out-cross-validation (LOOCV) is a special case of k-fold cross-validation
(k-fold CV) when k = n. In k-fold CV, a sample is split into k groups (folds) and each fold is taken
to be the validation set with the remaining k − 1 folds serving as the training set. For LOOCV,
each observation serves as the validation set with the remaining n− 1 observations serving as the
training set. Leave-one-out cross-validation is available in the R software program loo (Vehtari
et al. 2019).4

Following Vehtari et al. (2017), let yi (i = 1, . . . , n) be an n-dimensional vector of data
following a distribution conditional on parameters θ - viz., p(y|θ) = ∏n

i=1 p(yi |θ). Given a prior
distribution on the parameters, p(θ), we can obtain the posterior distribution, p(θ |y) as well as
a posterior predictive distribution of predicted values ỹ written as p(ỹ|y) = ∫

p(ỹi |θ)p(θ |y)dθ .
The Bayesian LOOCV rests on the derivation of the expected log point-wise predictive density
(elpd) for new data defined as

elpd =
n∑

i=1

∫
pt (ỹi )log p(ỹi |y)d ỹi , (25)

where pt (ỹi ) represents the distribution of the true but unknown data-generating process for the
predicted values ỹi and where (25) is approximated by cross-validation procedures. The elpd
provides a measure of predictive accuracy for the n data points taken one at a time (Vehtari et al.
2017). From here, the Bayesian LOO estimate can be written as

elpdloo =
n∑

i=1

log p(yi |y−i ), (26)

where

p(yi |y−i ) =
∫

p(yi |θ)p(θ |y−i )dθ, (27)

which is the leave-one-out predictive distribution using the log predictive score to assess predictive
accuracy.

It is useful to note that an information criterion based on LOO (LOOIC) can be easily derived
as

LOOIC = −2 êlpdloo (28)

which places the LOOIC on the “deviance scale” (see Vehtari et al. 2017 for more details on
the implementation of the LOOIC in loo). Among a set of competing models, the one with the
smallest LOOIC is considered best from an out-of-sample point-wise predictive point of view.

As pointed out by Vehtari et al. (2017), it can be time-consuming to calculate exact LOOCV
values and this may be a reason why LOOCV is not widely adopted. To remedy this, Vehtari et al.
(2017) developed a fast and stable approach to obtaining LOOCV referred to as Pareto-smoothed
importance sampling (PSIS-LOO) (see Vehtari et al. 2017, for more details). The PSIS approach
is implemented in loo (Vehtari et al. 2019).

4The widely applicable information criterion (WAIC) has also been advocated for model selection. Although the
WAIC and LOOCV are asymptotically equivalent (Watanabe 2010), the implementation of LOOCV in the loo package
is more robust in finite samples with weak priors or influential observations (Vehtari et al. 2017).



234 PSYCHOMETRIKA

6.2. Other Types of Weights

It is interesting to note that LOOCV has connections to other types of weights that can be
used for stacking. For example, in the case of maximum likelihood estimation, LOOCV weights
are asymptotically equivalent to Akaike information criterion (AIC) weights (Akaike 1973) that
are used in frequentist model averaging applications (Yao et al. 2018, see also; Burnham and
Anderson 2002; Fletcher 2018). In addition, so-called pseudo-BMA weights were proposed by
Geisser and Eddy (1979, see also; Gelfand 1996). This approach replaces marginal likelihoods
with Bayesian LOOCV predictive densites. The difficulty with pseudo-BMA weights is that they
do not take into account uncertainty in future data distributions. To address this Yao et al. (2018)
proposed an approach that combines the Bayesian bootstrap (see Rubin 1981) with the ELPD
defined earlier. They refer to this approach as pseudo-BMA+ and show that it performs better than
BMA and pseudo-BMA in M-open settings, but not as well as stacking using the log-score.

7. An Example of Bayesian Stacking

For this paper, we demonstrate Bayesian stacking using the software program loo with the
same PISA 2018 data set used to demonstrate BMA. The analysis steps for this demonstration
are as follows:

1. Specify four models of reading literacy. From Table 1, Model 1 includes only demo-
graphic measures (FEMALE, ESCS, HOMEPOS, ICTRES); Model 2 includes only
attitudes and behaviors specifically directed toward reading (JOYREAD, PISADIFF,
SCREADCOMP,SCREADDIF);Model 3 includes predictors related to academicmind-
set as well as general well-being; (METASUM, GFOFAIL, MASTGOAL, SWBP,
WORKMAST, ADAPTIVITY, COMPETE); and Model 4 includes attitudes toward
school (PERFEED, TEACHINT, BELONG).

2. Obtain results from log-score stacking weights, pseudo-BMA weights, and pseudo-
BMA+ weights.

3. Obtain posterior predictive distributions using the R software program rstanarm
(Goodrich et al. 2020).

4. Obtain KLD measures comparing the predicted distribution of reading scores to the
observed distribution. All code and data for this example are available on the authors
website (http://bmer.wceruw.org/index.html).

7.1. Bayesian Stacking Results

Table 5 presents the results for Bayesian stacking. We find that Model 2, which includes
predictors-related attitudes and behaviors directed toward reading, has the highest weight regard-
less of how the weights were calculated. We find that pseudo-BMA and pseudo-BMA+ places
almost all of the weight on Model 2 whereas the stacking weights based on the log predictive
score are somewhat more spread out, with model 3 having the next highest weight. We also find
that the Model 2 has the lowest LOOIC value.

The bottom row of Table 5 presents the KLD measures obtained from comparing the distri-
bution of predicted reading scores to the observed reading scores for each method of obtaining
weights. Here we find the that lowest KLD value obtained under the log-score stacking weights.
Overall, we find that stacking using loo weights provides overall the best predictive performance.
It may be interesting to note that the KLD values for the BMA results in Table 4 are uniformly
lower compared to the KLD values in Table 5 although it needs to be reiterated that BMA assumes
an M-closed framework.

http://bmer.wceruw.org/index.html
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Table 5.
Log-score stacking, PseudoBMA, and PseudoBMA+ weights along with LOOIC and Kullback–Leibler divergence.

Stacking PseudoBMA PseudoBMA+ LOOIC

Model 1 0.001 0.000 0.000 48277.66
Model 2 0.594 1.000 0.995 47644.65
Model 3 0.405 0.000 0.005 47860.30
Model 4 0.000 0.000 0.000 48757.57
KLD 0.016 0.018 0.018

8. Conclusions

Although the orientation of this paper was focused on Bayesian methods for quantifying
model uncertainty, it should be pointed out that issues of model uncertainty and model averaging
have been addressed within the frequentist domain. The topic of frequentist model averaging
(FMA) has been covered extensively in Hjort and Claeskens (2003), Claeskens and Hjort (2008)
and Fletcher (2018). Our focus on Bayesian model averaging is based on some important advan-
tages over FMA. As noted by Steel (2020), (a) BMA is optimal (under M-closed) in terms of
prediction as measured by the log predictive density score; (b) BMA is easier to implement in
situations where the model space is large due to very fast algorithms such as MC3; (c) BMA natu-
rally leads to substantively valuable interpretations of posterior model probabilities and posterior
inclusion probabilities; and (d) in the majority of content domains wherein model averaging is
required, BMA is more frequently used than FMA.

As the history of model uncertainty quantification illustrates, the problem has received con-
siderable attention in statistical theory and practice—particularly in the fields of economics and
weather forecasting. However, relatively less attention has been paid to the problem of model
uncertainty in psychometrics. Given the pervasive nature of model uncertainty and the con-
sequence of ignoring the problem with respect to predictive accuracy, certain challenges and
opportunities for research present themselves. The first challenge relates to shifting our research
orientation away from developing models for explanation and toward developing models for pre-
diction. Of course, these orientations are not mutually exclusive, but we argue that prediction
should take precedent to explanation simply due to the fact that it is hard to warrant explana-
tions of psychological phenomena derived from a psychometric model if the model has difficulty
predicting what has actually occurred (see Dawid 1982). Posterior predictive checking (Gelman
et al. 1996) in the context of model selection or model averaging should become standard prac-
tice across the social and behavioral sciences. The second challenge derives from listing those
uniquely psychometric methods, such as item response theory and factor analysis, and then iden-
tifying the elements of model uncertainty that might arise when such methods are applied to real
problems. For example, an interesting practical question that might arise concerns the extent of
model uncertainty in the estimation of plausible values developed for large-scale assessments
such as NAEP and PISA (Mislevy 1991; Mislevy et al. 1992). The estimation of plausible values
is essentially a missing data problem, and although Kaplan and Yavuz (2019) showed how BMA
could be incorporated into the multiple imputation setting, they did not extend their method to
the full machinery of plausible value methodology. Indeed, the problem of model uncertainty as
it pertains to the estimation of latent variables generally, either through IRT or factor analysis,
would be very interesting to explore and obviously quite relevant to psychometric theory and
practice. Promising research on this topic has begun with Rights et al. (2018), but much more
work remains.
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In conclusion, this review highlighted the ubiquitous problem of model uncertainty and the
availability of Bayesian methods to address this problem. Given that model uncertainty raises the
risk of “...over-confident inferences and decisions that are more risky than one thinks they are”
(Hoeting et al. 1999, pg. 382), future research should continue to be directed to the problem of
model uncertainty in the social and behavioral sciences.
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