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On the Performance of Horseshoe Priors for Inducing Sparsity in Structural 
Equation Models

Kjorte Harra and David Kaplan 

University of Wisconsin-Madison 

ABSTRACT 
The present work focuses on the performance of two types of shrinkage priors—the horseshoe prior 
and the recently developed regularized horseshoe prior—in the context of inducing sparsity in path 
analysis and growth curve models. Prior research has shown that these horseshoe priors induce spars-
ity by at least as much as the “gold standard” spike-and-slab prior. The horseshoe priors are compared 
to the ridge prior and lasso prior, as well as default non-informative priors, in terms of the percent 
shrinkage in the model parameters and out-of-sample predictive performance. Empirical studies using 
data from two large-scale educational assessments reveal the clear advantages of the horseshoe priors 
in terms of both shrinkage and predictive performance. Simulation studies reveal clear advantages in 
terms of shrinkage, but less obvious advantages in terms of predictive performance, except in the 
small sample size condition where both horseshoe priors provide noticeably improved predictive 
performance.

KEYWORDS 
Bayesian regularization; 
horseshoe priors; prediction; 
structural equation 
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1. Introduction

The development and implementation of Bayesian statistics 
in the social sciences have gained popularity in recent years 
with the increased accessibility of both proprietary and 
open-source software programs. As opposed to more trad-
itional frequentist approaches, Bayesian methods arguably 
offer more intuitive interpretations and allow researchers to 
directly account for uncertainty in model parameters, vari-
able selection via regularization, and model uncertainty 
(Kaplan, 2023).

This paper focuses on the flexibility offered with 
Bayesian inference in the context of variable section via 
model regularization. Model regularization enables research-
ers to induce sparsity and hence greater simplicity in their 
models without negatively impacting predictive perform-
ance. In other words, regularization directly addresses the 
age-old problem in statistics of the bias-variance trade-off— 
namely, the trade-off between the bias that can be incurred 
from not including potentially relevant variables in a model, 
with that of the loss in predictive accuracy due to increased 
variability across samples when variables have very small 
effects.

Regularization originated from a frequentist paradigm, 
specifically with the introduction of ridge regression by A. 
E. Hoerl and Kennard (1970), in which a penalty term is 
added to the regression equation to penalize the inclusion of 
irrelevant variables. However, more recent developments 
have demonstrated the flexibility and effectiveness of 
Bayesian approaches to regularization across a variety of 
statistical methods such as linear regression and factor 

analysis (see, e.g., Bainter et al., 2023; Jacobucci & Grimm, 
2018; van Erp et al., 2019). As pointed out by van Erp 
(2020) there are a number of important benefits in adopting 
a Bayesian framework for model regularization and variable 
selection. First, as we will see, regularization can be easily 
implemented through the priors placed on model parame-
ters, and these are generically referred to as shrinkage priors 
or sparsity-inducing priors. Shrinkage priors can be specified 
to shrink small coefficients toward zero while allowing large 
coefficients to remain large. Sparsity is induced by specify-
ing certain hyperparameters within the priors specified for 
the model parameters. The hyperpriors can be manipulated 
to increase or decrease the amount of shrinkage in the esti-
mated effects. For some regularization methods, these 
hyperparameters can be further defined through their own 
hyperprior distributions. Thus, model regularization fits the 
general framework of hierarchical Bayesian modeling.

The second benefit of adopting a Bayesian perspective to 
regularization is that the penalty term is estimated in the 
same step as the other model parameters. In other words, 
the penalty term is built into the model estimation process 
because it is incorporated directly into the model via a 
prior. In turn, that prior can be specified in a flexible man-
ner through different settings, controlling for the degree of 
shrinkage as the researcher sees fit.

Finally, the third benefit of estimating Bayesian penalty 
terms via prior distributions is that many different forms of 
penalties can be implemented. There are frequentist-based 
penalty techniques, such as the ridge and lasso methods, 
which have their Bayesian counterparts, but in addition, 
there are methods that are strictly Bayesian such as the 
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spike-and-slab prior and the horseshoe priors which are the 
focus of this paper (see van de Schoot et al., 2021, for more 
information on these priors).

The present paper examines the performance of two rela-
tively recent methods of Bayesian regularization: the original 
horseshoe prior (Carvalho et al., 2009, 2010a) and the regu-
larized horseshoe prior (Piironen & Vehtari, 2017) in the 
context of path analysis and growth curve modeling. We 
compare these two horseshoe priors to the ridge prior and 
lasso prior in terms of the amount of shrinkage, but also in 
terms of out-of-sample predictive performance. Our focus 
on these two priors specifically is that they have been shown 
to perform at least as well as the “gold standard” spike-and- 
slab prior (Mitchell & Beauchamp, 1988) with the regular-
ized horseshoe prior offering additional regularization of 
even large parameters. A further contribution of this paper 
is that we show how to implement the original and regular-
ized horseshoe priors in the R package blavaan (Merkle & 
Rosseel, 2018).

The organization of this paper is as follows. In the next 
section, we introduce the general idea behind Bayesian regu-
larization and then provide the details of the four regular-
ization priors that will form the focus of this study. This is 
followed by a discussion of how we will assess the predictive 
performance of these priors. Then, we will demonstrate 
these priors in the context of two special cases of structural 
equation modeling; path analysis and growth curve model-
ing. For the path analysis example, the focus will be on a 
model of reading performance using data from the 2009 
United States sample of the Program for International 
Student Assessment (PISA). For the growth curve modeling 
example, the focus will be on the prediction of change over 
time in reading performance using state-level data from the 
National Assessment of Educational Progress (NAEP). This 
is then followed by the design of our simulation study along 
with the results. The paper closes with a summary and 
discussion.

2. Overview of Bayesian Regularization

As noted earlier, Bayesian regularization differs from clas-
sical frequentist regularization in that frequentist regulariza-
tion attaches a penalty term to a model parameter, whereas 
Bayesian regularization requires attaching a prior distribu-
tion to model parameters that promote penalizing small 
coefficients (Jacobucci & Grimm, 2018). Within the realm 
of Bayesian regularization, researchers have many prior dis-
tributions to choose from, beginning with the ridge prior 
(Hsiang, 1975) that seeks to shrink parameters close to zero 
and minimize collinearity. The Bayesian lasso, first intro-
duced by Mitchell and Beauchamp (1988) improves upon 
the ridge prior as it allows shrinkage of coefficients to zero 
and thus serves as a method for variable selection. An 
extension of the frequentist lasso is the adaptive lasso which 
handles situations where the lasso is inconsistent for variable 
selection (Zou, 2006). We will not be exploring the adaptive 
lasso in this paper.

The Bayesian ridge and lasso priors, described in more 
detail below, are extensions of frequentist methods to the 
Bayesian context. Several strictly Bayesian approaches to 
regularization have also been developed. These include the 
spike-and-slab prior developed by Mitchell and Beauchamp 
(1988) and George and McCulloch (1993) which introduces 
a discrete prior to guide variable selection and sparsity. 
Next, the horseshoe prior by Carvalho et al. (2009, 2010a) 
allows for greater shrinkage than the ridge and the lasso 
while maintaining unregularized large coefficients. Most 
recently, to prevent large coefficients from remaining too 
large and escaping shrinkage, the regularized horseshoe was 
developed by Piironen and Vehtari (2017). The regularized 
horseshoe, which is sometimes referred to as the Finnish 
Horseshoe, also allows further flexibility than the original 
horseshoe prior and has been shown to further improve 
model predictive performance (see Piironen & Vehtari, 
2017). A feature of the regularized horseshoe prior, as 
expanded on below, is that the user is required to specify 
the number of large parameters they believe are in the 
model.

In general, previous research has shown that Bayesian 
regularization can perform as well as, if not better than, 
classical methods of regularization in linear regression (van 
Erp et al., 2019). This finding has not been extended to path 
analysis nor growth curve modeling, and moreover, to our 
knowledge, has not been evaluated in terms of out-of-sam-
ple predictive performance. Thus, this paper focuses on the 
performance of two versions of the horseshoe prior: the ori-
ginal horseshoe prior and the regularized horseshoe prior, 
both described below, in the context of manifest variable 
path analysis and growth curve modeling as implemented in 
the R program blavaan (Merkle & Rosseel, 2018). By way of 
the empirical examples for each model type and a compre-
hensive simulation study for both, the original horseshoe 
and regularized horseshoe will be compared to two other 
popular regularization priors: the ridge and lasso prior, and 
to the case of no regularization in terms of the amount of 
shrinkage in path coefficients as well as out-of-sample pre-
dictive performance.

2.1. An Aside: The Spike-and-Slab Prior

For this paper, we will not be examining the spike-and-slab 
prior even though it has been considered the “gold-stand-
ard” for sparsity for quite some time (George & McCulloch, 
1993; Mitchell & Beauchamp, 1988). However, in the inter-
est of completeness, we should say a brief word about it.

Following Kaplan (2023), the spike-and-slab prior gets its 
name because the prior distribution on the individual 
regression coefficients come from a two-component mixture 
of Gaussian distributions and can be written as

bpjkp, c, � � Nð0, c2Þ þ ð1 − kpÞNð0, �2Þ, (1a) 
kp � BerðpÞ (1b) 

where kp 2 f0, 1g is an indicator variable that follows a 
Bernoulli distribution, denoted as Ber(�) and determines 
whether the coefficient is close to zero, in which case it 
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comes from a so-called Dirac delta spike ðkp ¼ 0Þ or non-
zero, in which case it comes from the slab ðkp ¼ 1Þ To cre-
ate the spike, it is common to set �¼ 0. The slab width c 
and the inclusion probability p of the Bernoulli random 
variable is set by the user. Notice that with �¼ 0 the spike 
and slab prior can be rewritten as

bpjkp, c � Nð0, c2k2Þ, (2a) 

kp � BerðpÞ: (2b) 

The result of this setup is that k is a discrete parameter 
that only takes on two values ðkp ¼ 0, 1Þ:

It may be interesting to note that the spike-and-slab prior 
with a Dirac delta spike at zero arguably violates Cromwell’s 
rule (Lindley, 2007), which states that probabilities cannot 
be exactly zero (or one), insofar as it leads through Bayes’ 
theorem to state complete uncertainty (or certainty) about a 
parameter, and thus does not allow for evidence to change 
one’s assumptions about parameters via the posterior distri-
bution (see also Kaplan, 2023).

Finally, it is necessary to point out that blavaan, which 
runs Stan in the background, cannot incorporate discrete 
parameters. However, studies have shown the similarity in 
performance between the spike-and-slab prior and the 
horseshoe prior (see, e.g., Carvalho et al., 2010b; Polson & 
Scott, 2011). Finally, the spike-and-slab prior is similar to 
the regularized horseshoe prior when the slab width c <1, 
thus providing some regularization on large coefficients. 

Thus, we prefer to study the horseshoe priors and demon-
strate their implementation in blavaan.

2.2. Priors to Be Investigated

Figure 1 shows the density plots for the four regularization 
priors that we will be studying in this paper. We will refer 
to this plot throughout this section.

2.2.1. The Ridge Prior
As a regularization method, ridge regression (A. E. Hoerl & 
Kennard, 1970; R. W. Hoerl, 1985) aims to yield a parsimo-
nious regularized regression model in the presence of highly 
correlated variables. Following the discussion in Kaplan 
(2023), the frequentist ridge estimator of b, denoted as 
bridge is obtained by solving the minimization

bridge ¼ arg min
b

ðy0y − b0x0xÞ þ k
XP

j¼1
b2

j , (3) 

where y is an n� 1 vector of outcome scores, b is a P � 1 
vector of regression coefficients, x is an n�P matrix of pre-
dictors. The scalar k � 0 is a tuning parameter that controls 
the degree of regularization and k

PP
j¼1 b2

j is referred to as 
an L2 − norm: When k¼ 0, we have ordinary least squares, 
and when k ¼ 1 we obtain bridge ¼ 0: With ridge 

Figure 1. Regularization priors used in this paper. Top left: Ridge normal prior N(0,1); top right: Lasso Laplace prior with location ¼ 0, scale ¼ 4; bottom left: 

Horseshoe prior with kp � C
þð0, 1Þ and s � Cþð0, 1Þ; bottom right: regularized horseshoe prior with bjjkj , s, c � Nð0, s2 ~

k2
j Þ, where ~

k2
j ¼

c2k2
j

c2þs2k2
j

, andkj � C
þð0, 1Þ:
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regression it can be seen that a large value of k can lead to 
very heavy penalization.

The Bayesian specification of ridge regression was sug-
gested by Hsiang (1975) who showed that if b has a mean 
of zero and covariance matrix R ¼ ðr2=kÞI, and if e �

Nð0, r2
eIÞ, then the posterior mean of b is ðx0xþ kIÞ−1x0y, 

which is an alternative specification of the ridge estimator. 
Hsiang (1975) also notes that if weakly informative or 
informative priors are placed on each bj, then the interpret-
ation of the posterior mean of b as the ridge estimate is no 
longer valid. The penalty term (k) is captured through nor-
mally distributed independent priors placed on the regression 
slope parameters. These normal priors have mean hyperpara-
meter values fixed at zero in order to control shrinkage 
toward zero. The variance hyperparameter is typically 
rescaled to be in standard deviation form and is set to define 
the degree of spread that the distribution exhibits. Note that 
we specify a half-Cauchy prior distribution, denoted as Cþ

(0,1), for the residual standard deviation but other conjugate 
priors could be specified as well. A representation of the 
ridge prior is given in the top left of Figure 1.

2.2.2. The Lasso Prior
A drawback of ridge regression is that it does not improve 
parsimony in the sense that all of the variables still remain in 
the model after penalization (Zou & Hastie, 2005). A method 
that appears similar to ridge regression but is principally dif-
ferent in terms of yielding a parsimonious model is the least 
absolute shrinkage and selection operator (Tibshirani, 1996).

The frequentist lasso involves solving the expression

blasso ¼ arg min
b

ðy0y − b0x0xÞ þ k
XP

j¼1
jbpj, (4) 

The term k
PP

j¼1 jbjj is referred to as an L1 − norm penalty 
which allows less important coefficients to be set to zero, and 
thus the lasso provides for both shrinkage and variable selec-
tion. The Bayesian lasso, first introduced by Park and Casella 
(2008), uses a double exponential or Laplace prior where

pðbjÞ ¼
1
2s

exp −
jbjj

s

� �

, (5) 

where s ¼ 1=k:
The top right of Figure 1 shows the double exponential 

distribution. We see that the double exponential distribution 
is ideal because it peaks at zero, which shrinks small coeffi-
cients toward zero. However, the double exponential distribu-
tion can be set to have thick tails (in both directions), 
allowing the larger coefficients to remain large. Given that the 
distribution is centered at zero to control shrinkage toward 
zero, the mean hyperparameter setting is fixed to zero. The 
scale, or dispersion, of the double exponential distribution, is 
the hyperparameter that researchers can alter when imple-
menting the lasso. This defines the amount of spread and the 
thickness of the tails, which controls the degree of shrinkage 
in coefficients. Again, a Cþ(0,1) prior can be specified on the 
standard deviation of the residuals, if desired.

Although the ridge and lasso priors are similarly imple-
mented in the Bayesian framework, these techniques can 
produce different amounts of shrinkage depending on the 
hyperparameter settings. That is, the lasso approach can 
result in more shrinkage for the small estimates, but less 
shrinkage for the large estimates. This result is a function of 
the double exponential distribution implemented in the 
lasso approach. The double exponential distribution is more 
peaked around zero and it has heavier tails compared to the 
normal distribution used in the ridge approach. Regardless 
of the approach implemented, Bayesian penalization can be 
a useful tool when attempting to avoid overfitting a complex 
model to small samples. Indeed, the lasso is simultaneously 
a shrinkage and variable selection method. In addition, these 
approaches further highlight the modeling flexibility that 
Bayesian methods provide through the flexible implementa-
tion of priors.

2.2.3. Two Horseshoe Priors
The focus of this paper is on the performance of two horse-
shoe priors: the original horseshoe prior first introduced by 
Carvalho et al. (2009, 2010a), and the more recently devel-
oped regularized horseshoe prior introduced by Piironen 
and Vehtari (2017).

2.2.3.1. Original Horseshoe. The horseshoe prior can be 
characterized as a scale mixture of normals with half- 
Cauchy tails offering unique features in enacting shrinkage 
not previously seen in other regularization priors. 
Specifically, the horseshoe prior is defined as follows. For 
j ¼ 1, . . . , P

hjjkj, s � Nð0, k2
j s

2Þ (6a) 

kj � C
þð0, 1Þ, (6b) 

where s is the global shrinkage parameter on model param-
eters hj, and kj is the local shrinkage parameter. A unique 
feature of the horseshoe prior is that the tails of the Cþ dis-
tribution permit large parameters to remain unregularized, 
while the global shrinkage parameter s severely shrinks 
parameters that are close to zero (Carvalho et al., 2009, 
2010a). The density plot for the original horseshoe is given 
in the lower left of Figure 1.

Gaining an intuition of the horseshoe prior can be 
obtained by studying its so-called shrinkage profile. 
Following Piironen and Vehtari (2017), first assume that the 
predictors, fxjg

p
j¼1 are uncorrelated with mean zero and var-

iances VðxjÞ ¼ s2
j : Further, let b̂j be the maximum likeli-

hood estimate of bj. Then, the shrunken estimate of bj can 
be approximated by

�bj ¼ ð1 − jjÞb̂j, (7) 

where jj is the shrinkage factor for bj defined as

jj ¼
1

1þ nr−2s2s2
j k

2
j

(8) 

We see that as s!1, bj ! b̂j , implying no shrinkage. 
Conversely, as s! 0, bj ! 0, implying total shrinkage. 
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Furthermore, Carvalho et al. (2010a, see also; Piironen & 
Vehtari, 2017) show that when kj take on independent half- 
Cauchy distributions, then jj takes on the horseshoe-shaped 
Beta 1

2 , 1
2

� �
distribution from which the prior gets its name 

(see Figure 2). We observe that when small parameters are 
encountered, there is a high probability of shrinkage, and 
when there are large parameters encountered, there is a 
high probability of no shrinkage.

An added benefit of the horseshoe prior over the ridge 
and lasso priors is that it can distinguish global shrinkage 
using s and local shrinkage with kj (Carvalho et al., 2010a). 
Furthermore, the horseshoe prior is essentially a continuous 
counterpart to the spike-and-slab prior with an infinitely 
wide slab width (Piironen & Vehtari, 2017) and thus offers 
a method of regularizing models in a similar manner as 
spike-and-slab priors when using software that does not 
support such discrete parameter distributions, such as Stan 
(Stan Development Team, 2021) and programs that rely on 
Stan such as rstanarm (Goodrich et al., 2022), brms 
(B€urkner, 2017, 2018), and blavaan (Merkle et al., 2021; 
Merkle & Rosseel, 2018).

2.2.3.2. Regularized Horseshoe. Following the discussion 
given in Piironen and Vehtari (2017, see also; Kaplan, 
2023), a limitation of the original horseshoe prior relates to 
the regularization of the large coefficients. Specifically, it 
is still the case that large coefficients can transcend the 
global scale set by s0 with the impact being that the posteri-
ors of these large coefficients can become quite diffused, 
particularly in the case of weakly-identified coefficients 
(Betancourt, 2018a). To remedy this issue, Piironen and 
Vehtari (2017) proposed a regularized version of the horse-
shoe prior (also known as the Finnish horseshoe prior). 
Following the notation used in Betancourt (2018a) the 

regularized horseshoe prior takes the form of the following: 
For j ¼ 1, . . . , p, where p are the number of predictors,

bj � Nð0, s2 ~k2
j Þ, (9a) 

~kj ¼
ckj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ s2k2

j

q , (9b) 

kj � C
þð0, 1Þ, (9c) 

c2 � IG
�

2
,
�

2
s2

� �

, (9d) 

s � Cþð0, s0Þ, (9e) 

where c> 0 and s2 is the variance for each of the p predictor 
variables. As pointed out by Piironen and Vehtari (2017), 
those variables that have large variances would be consid-
ered more relevant a priori, and while it is possible to pro-
vide predictor-specific values for s2, generally we scale the 
variables ahead of time so that s2 ¼ 1: Finally, c2 is the slab 
width which controls the size of the large regression coeffi-
cients. The density plot for the regularized horseshoe is 
given in the lower right of Figure 1.

To gain an intuition of the regularized horseshoe, first 
note that the form of Equations (9a-9d) is quite similar to 
the horseshoe prior, however ~kj places a control on the size 
of the coefficients by introducing a slab width c2 in 
Equation (9b). Following Piironen and Vehtari (2017), 
notice that if s2k2

j � c2 then this means that bj is close to 
zero and ~kj ! kj, which is the original horseshoe in 
Equations (6a) and (6b). However, if s2k2

j � c2, then ~kj !

c2=s2 and the prior begins to approach the Nð0, c2Þ, where 
again, the choice of c2 controls the size of the large coeffi-
cients. Because c2 is a slab width that might not be well 
known, it follows that it should be given a prior distribu-
tion, and Piironen and Vehtari (2017) recommend the 
inverse-gamma distribution (IG) in Equation (9d) which 
induces a relatively non-informative Student’s—t slab when 
coefficients are far from zero (Piironen & Vehtari, 2017). 
When coefficients are small, the prior behaves similarly to 
the horseshoe, but when coefficients are large they are regu-
larized with a Gaussian slab with a variance of c2.

Another way to understand the regularized horseshoe 
prior is to examine its shrinkage profile relative to the 
shrinkage profile of the original horseshoe in Figure 3. 
Below, we present the shrinkage profile of the regularized 
horseshoe. Note that this shrinkage profile does not have 
the exact shape of the Beta 1

2 , 1
2

� �
distribution of the original 

horseshoe in Figure 3. Specifically, there is slightly more 
mass at the left mode because the regularized horseshoe is 
shifted to the right of 0.0 by 0.05 (see also Piironen & 
Vehtari, 2017). Thus, the regularized horseshoe induces a 
certain amount of shrinkage (jj ¼ 0.05) when encountering 
large parameters and so they too are regularized as are the 
small parameters under total shrinkage (jj ¼ 1.0).

2.2.3.3. Eliciting Hyperparameters for s. Inspection of 
Equation (9e) reveals that one needs to set a value of s0 
which, in turn, will determine the amount of global shrink-
age induced by s in Equation (9a). The approach we study 

Figure 2. Density of shrinkage weight for the original horseshoe prior. Note 
that the profile suggests high density when there are large parameters (j � 0, 
no shrinkage) and high density when there are very small parameters (j � 1, 
total shrinkage) (Carvalho et al., 2010a).
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in this paper rests on the intuition provided in Piironen and 
Vehtari (2017) who relate the choice of s0 to the effective 
number of non-zero coefficients in the model. Specifically, 
Piironen and Vehtari (2017) define the effective number of 
non-zero coefficients in terms of the shrinkage parameter jj 
as

meff ¼
Xp

j¼1
ð1 − jjÞ (10) 

where we can see that if jj is close to zero or one, the result 
is effectively the number of non-zero coefficients in the 
model. Next, Piironen and Vehtari (2017) show that assum-
ing that VðxjÞ ¼ sj ¼ 1, then

Eðmeff js, rÞ ¼
sr−1 ffiffiffi

n
p

1þ sr−1 ffiffiffi
n
p � p (11) 

Now, letting p0 � Eðmeff js, rÞ, a value of s0 for s obtains 
as

s0 ¼
p0

p − p0
�

r
ffiffiffi
n
p (12) 

where again, p is the number of coefficients in the model, 
and p0 ð6¼ pÞ is the number of coefficients assumed to be 
“large” in the model.

For practical purposes, Piironen and Vehtari (2017) note 
that the standard choice of a Cþð0, 1Þ distribution for s 

would end up placing a great deal of mass on large coeffi-
cients, particularly when p is large, and thus the solution 
would end up with many coefficients that are “unshrunk.” 
A better approach is to use prior information to decide on a 
sensible number for p0 with the understanding that because 
the contexts of research questions can change quite dramat-
ically, there are no global rules of thumb for choosing values 
of p0. It should also be noted that previous research has 
demonstrated that the regularized horseshoe prior is robust 
to the choice of p0 (Piironen & Vehtari, 2017), but to the 
best of our knowledge, this has not been replicated in the 
context of structural equation models (though we don’t 
expect many differences in this context) nor, more 

importantly, with respect to out-of-sample prediction as will 
be studied in this paper. Thus, a contribution of this paper 
will be to examine the performance of the regularized horse-
shoe under different values of p0 through our simulation 
study.

3. Evaluating Predictive Performance

Arguably, the overarching goal of statistics is prediction. In 
other words, a key characteristic of statistics is to develop 
accurate predictive models, and all other things being equal, 
a given model is to be preferred over other competing mod-
els if it provides better predictions of what actually occurred 
(Dawid, 1982, 1984, see also; Kaplan, 2023). Indeed, it is 
hard to feel confident about inferences drawn from a model 
that does a poor job of predicting the extant data. The prob-
lem, however, is how to develop accurate predictive models, 
and, importantly, how to evaluate their accuracy. Thus, 
instead of attempting to simply explain the current data at 
hand, a model should be applicable to other data outside 
the present sample.

For this paper, we will be using Bayesian leave-one-out 
cross-validation (LOO-CV) to evaluate model predictive 
performance (Vehtari et al., 2017). A unique contribution of 
this work is using LOO-CV as a method of comparing the 
predictive performance of the four regularization priors. 
Bayesian leave-one-out cross-validation is a special case of 
so-called k-fold cross-validation in which the data set is div-
ided into two folds: The statistical model of interest is fitted 
with the training set and then compared to the ith observa-
tion in the test set to measure predictive performance. This 
process is then repeated for each observation being desig-
nated as the “left out” data point. Thus, LOO-CV is a k-fold 
cross-validation procedure where k¼ n.

The LOO-CV has been around since at least the mid- 
1970s (Allen, 1974; Stone, 1974) and is uniquely suited to 
the question of out-of-sample predictive performance. It is 
superior to the deviance information criterion (DIC) 
(Spiegelhalter et al., 2002) insofar as the DIC, like its fre-
quentist counterpart the Akaike information criterion (AIC) 
(Akaike, 1973) is not fully Bayesian because it conditions on 
a plug-in point estimate, say ĥBayes, (albeit Bayesian) rather 
than averaging over the posterior distribution to account for 
uncertainty in the parameter estimates. As noted by Gelman 
et al. (2014), the AIC and DIC are actually gauging the pre-
dictive performance of the plug-in estimators, say, ĥmle and 
ĥBayes, respectively, rather than the actual predictive density. 
What is needed therefore is a measure based on the point- 
wise predictive density for each observation in the data set 
as these are the quantities of actual concern in prediction.

The LOO-CV is quite similar to the widely applicable infor-
mation criterion (WAIC) was developed by Watanabe (2010) 
as a fully Bayesian counterpart to the AIC. As with the AIC 
and DIC, the WAIC uses the same data to assess the predict-
ive performance of the model as was used to estimate the 
model and thus could lead to overstating the predictive qual-
ity of the model. Although the WAIC and LOO-CV are 

Figure 3. Density of shrinkage weight for the regularized horseshoe prior. Note 
that this shrinkage profile does not have the exact shape as the original horse-
shoe in Figure 1 there is slightly more mass at the left mode (see also Piironen 
& Vehtari, 2017).
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asymptotically equivalent, ideally, we would like to use actual 
out-of-sample data in order to assess predictive performance.

The LOO-CV rests on the derivation of the expected log 
point-wise predictive density (ELPD) for new data defined as

ELPD ¼
Xn

i¼1

ð

ptð~yiÞlog pð~yi jyÞd~yi , (13) 

where ptð~yiÞ represents the distribution of the true but 
unknown data-generating process for the predicted values ~yi 
and where Equation (13) is approximated by cross-valid-
ation procedures. The ELPD provides a measure of predict-
ive accuracy for the n data points taken one at a time 
(Vehtari et al., 2017).

The ELPD for leave-one-out cross-validation (denoted as 
ELPDloo is defined as

ELPDloo ¼
Xn

i¼1
log pðyijy−iÞ, (14) 

where

pðyijy−iÞ ¼

ð

pðyijhÞpðhjy−iÞdh (15) 

is the LOO predictive density given the data with the ith 

data point left out (Vehtari et al., 2017). The log sum of 
these predictive densities in Equation (14) is the LOO-CV 
estimate of the expected log pointwise predictive density 
(ELPD) (Gelman et al., 2014; Gronau & Wagenmakers, 
2019; Vehtari et al., 2017).

As pointed out by Vehtari et al. (2017), LOO is asymp-
totically equivalent to the WAIC, but in the case of finite 
samples with weak priors and/or influential observations, a 
more robust method for calculating the LOO-CV might be 
desired. To this end, Vehtari et al. (2017) developed a fast 
and stable approach to obtaining LOO-CV using Pareto- 
smoothed importance sampling (PSIS). As applied to LOO, 
the importance ratios are obtained as

rt
i ¼

pðhtjy−iÞ

pðhtjyÞ
(16) 

From here, the importance sampling LOO predictive dis-
tribution is obtained as

pð~yi jy−iÞ �

PT
t¼1 rt

i pð~yi jh
tÞ

PT
t¼1 rt

i
: (17) 

The density of the held-out data point is obtained from 
the T posterior samples as

pðyijy−iÞ �
1

1
T
PT

t¼1
1

pðyijh
TÞ

: (18) 

The importance weights in Equation (16) can have very 
large (and perhaps infinite) variances. To handle this, 
Vehtari et al. (2017) propose the use of the generalized 
Pareto distribution which provides the same diagnostic 
based on the shape parameter k of the Pareto distribution. 
The same rules of thumb as discussed in Section 4.8 apply. 
The PSIS approach is implemented in loo (Vehtari et al., 
2019), and is often referred to as PSIS-LOO. The PSIS-LOO 
measure is available in the R software program loo (Vehtari 
et al., 2019) and available in blavaan (Merkle & Rosseel, 
2018) when calling “blavFitIndices().”

The LOO measure offers point-wise predictions where 
individual observations can be predicted as opposed to 
overall means. Previous research has demonstrated that 
LOO-CV values are a sufficient way to measure a model’s 
out-of-sample predictive fit (Vehtari et al., 2017). By com-
paring the same path model with different regularization 
priors one can directly compare regularization methods in 
terms of out-of-sample predictive performance.

It is useful to note that an information criterion based on 
LOO, referred to as the LOO-IC, can be easily derived as

LOO � IC ¼ −2 delpdloo (19) 

which places the LOO-IC on the deviance scale. Among a 
set of competing models, the one with the smallest LOO-IC 
is considered best from an out-of-sample point-wise predict-
ive point of view. We will use the LOO-IC for the compari-
son of our regularization priors. In addition, it may also be 
interesting to note that under maximum likelihood estima-
tion, LOO-CV is asymptotically equivalent to the AIC 
(Stone, 1977, see also; Yao et al., 2018).

4. Empirical Examples

The following section will demonstrate how both versions of 
the horseshoe prior can be implemented and performance 
can be compared to other regularization priors using real- 
world data in structural equation modeling—specifically 
path analysis and growth curve modeling. For both empir-
ical examples, R’s blavaan (Merkle et al., 2021) package is 
used to estimate the models and calculate LOO-IC estimates 
to compare predictive performance.

4.1. Path Analysis

The empirical data used in the present path analysis 
example originates from the 2009 US sample of PISA 
(N¼ 5,233). The aim of PISA is to assess secondary stu-
dents’ competencies in several academic domains as well as 
students’ motivations and learning strategies (OECD. , 
2010). Participating 15-year-old students complete an exam 
with a focus on reading literacy for the 2009 cycle, as well as 
a background questionnaire to gain a better understanding 
of students’ attitudes, motivations, and knowledge of the 
broader social contexts in which they learn. PISA is used to 
inform education policymakers of factors associated with 
successful educational outcomes as well as markers for 
countries’ progress toward educational goals.

Figure 4 below displays this path model, where the out-
come is reading comprehension scores as predicted by three 
approaches to students’ learning: memorization through 
rereading texts until they can recite them (MEMOR), elab-
oration strategies such as relating the material to their prior 
knowledge (ELAB), and control strategies such as checking 
for understanding (CSTRAT). Predictors of these learning 
strategies include a PISA index of economic, social, and cul-
tural status (ESCS), a binary indicator of students’ gender 
(0¼male, 1¼ female), and an index of immigrant 
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background (Immigrant) which asks if a student is a first- 
generation, second-generation, or native-born student.

4.1.1. Bayesian Path Analysis
The general form of a path analytic model among observ-
able variables can be written in matrix notation as (see e.g 
Bollen, 1989; Kaplan, 2009)

y ¼ aþ By þ Cx þ f, (20) 

where a is a vector of structural intercepts, B and C repre-
sent the structural relationships among the variables and f 
is a vector of residuals. Estimation of this model from a fre-
quentist perspective is based on principles of either max-
imum likelihood estimation or generalized least squares. 
Bayesian estimation of the path model requires that prior 
distributions be placed on all model parameters, and sum-
maries of the posterior distributions of the model parame-
ters are obtained via methods of Markov chain Monte Carlo 
sampling (MCMC). For a detailed discussion of Bayesian 
path analysis, and Bayesian structural equation modeling in 
general, see Depaoli (2021).

4.1.2. Blavaan Implementation
A contribution of this paper includes a guide on how 
researchers can implement both horseshoe priors into bla-
vaan utilizing the “mcmcextra 5 list()” argument in blavaan 
functions such as “bsem” used in this paper. However, a 
few details are worth noting. The present version of blavaan 
runs the Stan program language in the background, and 
Stan utilizes Hamiltonian Monte Carlo (HMC) via the No- 
U-Turn (NUTS) sampler. For a discussion of HMC and 
NUTS, see Betancourt (2018b) and Hoffman and Gelman 
(2014). However, in order to implement the horseshoe pri-
ors in blavaan it is necessary to add code to blavaan via the 
“mcmcextra 5 list()” command. At present however, 
“mcmcextra” cannot be implemented if Stan is used, and so 
the analysis must be run using JAGS (Plummer, 2003) in 
the background via the “target 5“jags”.”1 The full blavaan 
code for our empirical example, including the specification 

of the priors for each regularization method, is given in 
Appendix A.

4.1.3. Results of Empirical Example
Preliminary analyses revealed that very little differences 
were found for sample sizes larger than 100. Thus, for this 
empirical example, a path model was estimated on a ran-
dom sample of size 50. Markov chain Monte Carlo sampling 
using the Gibbs sampler implemented in blavaan through 
its interface with JAGS was constructed with 10,000 itera-
tions, 5,000 burn-in and 5,000 post-burn-in. The models 
took approximately three minutes each to compute.

Results of the path analysis with default non-informative 
priors along with the four different regularization priors 
used are depicted in Figure 5 with mean parameter esti-
mates and their 95% probability intervals. Bayesian credible 
intervals represent the probability that the true effect of a 
predictor on an outcome lies within that interval. Model 
diagnostics including potential scale reduction factors 
(Brooks & Gelman, 1998) along with other MCMC conver-
gences indices such as trace plots and autocorrelation plots 
(not shown) revealed adequate convergence of the 
algorithm.

Posterior regression estimates for the blavaan default 
non-informative priors and all of the regularization priors 
show roughly the same pattern of results, but considerable 
differences in the amount of shrinkage. For example, in 
Figure 5, the results under the blavaan default priors show 
that the use of elaboration strategies for reading is predicted 
by the PISA socioeconomic measure (ESCS) and that zero is 
not in the 95% credible interval. Both the ridge and lasso 
priors show a small (and similar) amount of shrinkage, but 
zero remains outside the 95% credible interval. Contrast this 
with the results for the horseshoe and regularized horseshoe 
priors where we find considerable (and comparable) shrink-
age, but now zero resides in the 95% credible interval. We 
find no noticeable differences in parameter estimates 
between the horseshoe and regularized horseshoe, and both 
versions of the horseshoe yielded a greater amount of 
shrinkage as well as slightly more precise parameter esti-
mates compared to the previously used priors and a non- 
informative unregularized default prior.

Figure 6 more clearly shows the amount of shrinkage 
based on each prior relative to the blavaan non-informative 
default prior model. The height of each bar segment repre-
sents the mean parameter estimate for each regularization 
prior. Segments smaller than the default prior estimates 
demonstrate more shrinkage for a given prior on a given 
parameter. We can see that the horseshoe and regularized 
horseshoe demonstrate the largest amount of shrinkage 
across parameters, especially those that are relatively large. 
We most strongly observe this effect with the 
“READ�CSTRAT,” “ELAB�ESCS”, and “CSTRAT�
GENDER” parameters, as both versions of the horseshoe 
priors have noticeably smaller estimates than the ridge and 
lasso priors. We do not observe much difference in terms of 
shrinkage between the original and regularized horseshoe.

Figure 4. Path model predicting US PISA students’ reading scores by three dif-
ferent learning strategies (memorization, elaboration, and control strategies) as 
well as student background information (economic, social, and cultural status, 
gender, and immigration background).

1Note that the spike-and-slab prior cannot be implemented in Stan because 
of the program’s inability to implement discrete prior distributions (Stan 
Development Team, 2021).
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To assess the predictive performance of the four regularization 
priors, LOO-IC values were used to compare out-of-sample pre-
dictive performance. LOO-IC values for each of the four regular-
ization priors and the blavaan default priors are reported in 
Table 1. Compared to other competing models, the model with 
the lowest LOO-IC value holds the strongest predictive accuracy.

We find that the horseshoe priors provide the best pre-
dictive performance compared to the ridge and lasso priors 
in predicting reading achievement. Default path analysis 
with non-informative priors and no regularization per-
formed the worst, followed by the ridge and then the lasso. 
Based on these results, it is evident that the original 

Figure 5. Empirical path model results for predicting US PISA students’ reading achievement (n¼ 50).

Figure 6. Mean parameter estimates for the given path model in the empirical study.
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horseshoe and regularized horseshoe Bayesian priors are a 
reasonable choice in path analysis as they allow large coeffi-
cients to remain large while shrinking small ones while at 
the same time providing the overall best predictive perform-
ance. Other analyses with larger sample sizes showed very 
few differences and our results are in line with Jacobucci 
and Grimm (2018) and consistent with Bayesian theory that 
when sample sizes are large the prior distribution becomes 
less influential than the likelihood.

4.2. Growth Curve Modeling

The growth model we use for this empirical example 
includes data from eight cycles of the National Assessment 
of Educational Progress (NAEP) from 2003 to 2017 (U.S. 
Department of Education et al., 2022) as well as other data 
from the National School Lunch Program (NSLP) and the 
Common Core of Data (CCD, Common Core of Data, 
2020). We construct a model tracking the rate of growth in 
students’ math scores over time across US states, as pre-
dicted by reading scores at a given time point as well as sev-
eral school-level time-invariant predictors. These variables 
include the difference between 2017 and 2003 state-level 
full-time equivalent teachers, the difference between 2017 
and 2003 pupil-to-teacher ratio, the difference between 2015 
and 2003 total revenue, and the difference in the 2017 and 
2003 percentages of NSLP-eligible students. Specifically, we 
write the intra-state model of change over time in mathem-
atics scores as (see Bollen & Curran, 2006; Depaoli, 2021)

yti ¼ p0i þ p1iati þ rti (21) 

where yit is mathematics score for state i (i ¼ 1, . . . nÞ at 
time t (t ¼ 1, . . . T) where a is an indicator of the NAEP 
assessment cycle, p0i is the intercept capturing state i’s math 
score at time t, p1i is the slope (rate of linear growth over time) 
in the mathematics score for state i at time t, and rit is the 
residual term. Together p0 and p1 are the growth parameters.

The inter-state model can be written generally as

ppi ¼ bp0 þ
XKp

k¼1
bpkxki þ �pi, (22) 

where the ppi are the growth parameters (intercept and 
growth rate), xki are values on K predictors for state i, and 
�pi are errors.

Bayesian growth curve modeling requires specifying a 
probability model for the outcome and placing priors on all 
model parameters (Kaplan, 2023). The priors on this growth 

curve model are non-informative or weakly-informative (see 
e.g., Gelman et al., 2017).

A total sample size of 50 jurisdictions was used, includ-
ing 49 US states (Tennessee was removed due to missing-
ness) as well as Washington D.C. Markov chain Monte 
Carlo sampling using the Gibbs sampler implemented in 
blavaan’s “bgrowth” function through its interface with 
JAGS was constructed with 20,000 iterations and 5,000 
adaption steps. The models each took approximately fifteen 
minutes to compute. The full blavaan code for this empirical 
example, including the specification of the regularization 
priors, can be found in Appendix A.

4.2.1. Results
We find with this empirical example that the horseshoe pri-
ors again outperformed other regularization priors and a 
non-informative default prior. Table 2 reports these results, 
we see very little difference in terms of predictive perform-
ance between the ridge, lasso, and default priors. However, 
the lower LOO-IC estimates for both horseshoe priors pro-
vide evidence that those priors induced stronger predictive 
performance than the other methods.

Pairwise comparisons of each regularization method pro-
vide further evidence that in this example the horseshoe pri-
ors outperform the others. Table 3 contains pairwise 
comparisons of LOO estimates, where a negative difference 
means the regularization method in that row exhibits a 
lower LOO estimate. Following Hollenbach and 
Montgomery (2020)’s recommendations, which assert that a 
LOO difference at least twice its standard error is note-
worthy, we find that both horseshoe priors possess stronger 
predictive performance than the ridge, lasso, and unregular-
ized model. The regularized horseshoe also performed better 
than the original horseshoe when directly comparing distri-
butions, despite the regularized horseshoe holding a slightly 
larger mean LOO-IC estimate as seen in Table 2.

These two empirical examples with growth curve model-
ing and path analysis suggest that the original horseshoe 
prior and regularized horseshoe prior both result in greater 
amounts of shrinkage and noticeably better predictive per-
formance in comparison to the ridge and lasso priors for 
small sample sizes with real-world data.

5. Simulation Study

In this section, we present a comprehensive simulation 
study comparing the horseshoe and regularized horseshoe 

Table 1. LOO-IC estimates for each regularization method in the path analysis 
example.

Estimate Difference from default

Default 588.53 0.00
Ridge 587.42 −1.11
Lasso 585.32 −3.21
Horseshoe 579.11 −9.42
Regularized horseshoe (p0 ¼ 1)a 579.26 −9.27
ap0 ¼ 1 means that we are assuming that there is only one large coefficient 
in the model. Differences are calculated from blavaan default non-informative 
priors.

Table 2. LOO-IC estimates for each regularization method in the growth curve 
model.

Estimate Difference from default

Default 216.86 (20.82) 0.00
Ridge 217.07 (20.93) −0.21
Lasso 216.82 (20.93) −0.04
Horseshoe 212.32 (20.83) −4.54
Regularized horseshoe (p0 ¼ 1)a 212.60 (20.82) −4.26
ap0 ¼ 1 means that we are assuming that there is only one large coefficient 
in the model. Differences are calculated from blavaan default non-informative 
priors.
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priors to the ridge and lasso priors with respect to the 
amount of shrinkage in parameter estimates as well as pre-
dictive performance, while varying the sample size and the 
number of coefficients that the investigator has reason to 
believe (a priori) are large, which is specific to the regular-
ized horseshoe prior.

5.1. Path Analysis Simulation Study

5.1.1. Conditions
A Monte Carlo simulation study was conducted to compare 
the predictive performance and average shrinkage of these 
regularization priors in Bayesian path analysis. Data were 
simulated from the same path model previously used in our 
empirical example except the path of gender predicting elab-
oration was removed due to its insignificance. For blavaan 
defaults, the ridge prior, the lasso prior, and the horseshoe 
prior, four different sample size conditions were tested 
(n ¼ 30, 100, 500, and 3000). For the regularized horseshoe 
prior, the same sample size conditions were tested as well as 
the choice of p0, where p0 ¼ 1, 3, 6, and 10 where the total 
number of parameters p is 11. In total, there were 32 condi-
tions. One thousand replications were generated for each 
condition of the study. For each replication, models were 
estimated with Markov chain Monte Carlo sampling using 
the Gibbs sampler in blavaan with 10,000 iterations, 5,000 
burn-in, and 5,000 adaptation steps. Simulation results 
showed acceptable model convergence for further analysis. 
Software code for the simulation study is available at http:// 
bmer.wceruw.org/publications.html.

5.1.2. Results of Simulation Study
Figure 7 below depicts mean parameter estimates across 
regularization priors and sample sizes for the given path 
model. For both the ridge and lasso priors, shrinkage is rela-
tively small across parameters, especially when sample sizes 
are larger. The lasso does yield greater shrinkage than the 
ridge particularly for small samples, as expected.

Mean parameter estimates for the regularized models are 
compared to the population model, which was derived from 
a standardized 2009 US Sample of PISA (N ¼ 5, 233Þ: We 
chose the estimates obtained from this model as the simula-
tion study parameters in order to mimic a real-world model 
researchers may encounter using these methods so that we 
can more closely study regularization performance.

The horseshoe priors yield much more shrinkage com-
pared to the ridge and lasso priors, this difference is espe-
cially noticeable for small sample sizes. Differences in 

shrinkage between both versions of the horseshoe prior is 
minimal.

As with any Bayesian model construction, prior distribu-
tions are much less influential when sample sizes are large. 
Here, we observe this same effect as these regularization pri-
ors did not result in much shrinkage with the large sample 
sizes, even for the horseshoe priors.

Mean LOO-IC estimates are used to compare the predict-
ive performance of the priors of interest in this study. It is 
important to note that LOO-IC values depend on sample 
size, as each observation is compared to a predicted out-
come and the sum of these differences becomes the LOO 
estimate. Therefore, comparisons between different sample 
sizes in predictive performance are impossible using the 
LOO-IC. Direct comparisons can only be made 
between models with the same sample size. Results for all 
four priors and four sample sizes are contained below in 
Table 4.

These results show that the original horseshoe and the 
regularized horseshoe prior yield the best predictive 
performance across sample sizes. The differences between 
blavaan default non-informative prior and the ridge and 
lasso priors are smaller, especially when sample sizes are 
large.

To study the impact of the choice of p0 on predictive 
performance, three other p0 values were used in simulations 
from the same population path model at the four sample 
size conditions. Table 5 contains these results. In terms of 
predictive performance, the selection of p0 seems to have lit-
tle impact across varying sample sizes. Next, the shrinkage 
of coefficients for the regularized horseshoe is shown. The 
selection of p0 also did not result in any difference in 
shrinkage.

These results show that misspecifying p0 is not detrimen-
tal to predictive performance, as differences in LOO-IC esti-
mates between p0 choices are minimal.

We examined how shrinkage with the regularized horse-
shoe varied by sample size and prior guess of the number of 
large coefficients. These results are contained in Figure 8.

For the two smaller sample size conditions, we observe 
the largest amount of shrinkage when the choice of p0 is 
larger however these differences are relatively small. When 
samples are quite large, the amount of shrinkage across 
parameters does not vary much as there is much less 
shrinkage across all model parameters. The choice of p0 
may be slightly more sensitive when the sample size is 
small, However, this choice does not appear to impact pre-
dictive performance.

5.2. Growth Curve Model Simulation Study

5.2.1. Conditions
A Monte Carlo simulation study was conducted to compare 
the predictive performance and average shrinkage of these 
regularization priors in the context of Bayesian growth 
curve modeling. Data were simulated from a similar model 
as used in the previous growth curve model empirical 
example, with coefficients artificially magnified by a 

Table 3. LOO pairwise differences and standard errors for each regularization 
method in the growth curve model.

Default Ridge Lasso Horseshoe

Default
Ridge −0.10 (0.09)
Lasso −0.05 (0.06) 20.14 (0.06)
Horseshoe 22.29 (0.29) 22.39 (0.31) 22.24 (0.31)
Regularized horseshoe 22.13 (0.30) 22.22 (0.32) 22.08 (0.32) 20.17 (0.04)

Differences � 2 standard errors are bolded.
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factor of 10 to better detect shrinkage and model perform-
ance. For blavaan defaults and the regularized priors, 
four different sample size conditions were tested 
(n ¼ 50, 100, 500, and 1000). Since the previous simulation 
study, along with previous research has demonstrated the 
regularized horseshoe’s p0 parameter does not hold a 
strong influence over the model (Piironen & Vehtari, 2017; 
van Erp et al., 2019), we will omit testing varying p0 selec-
tions. One thousand replications were generated for each 
of the 20 conditions of the study. For each replication, 
models were estimated with Markov chain Monte Carlo 
sampling using the Gibbs sampler in blavaan with 20,000 
iterations with 5,000 adaptation steps. Proper model con-
vergence was reached to allow for further analysis. 
Software code for the simulation study is available at 
https://bise.wceruw.org/publications.html.

5.2.2. Results of Simulation Study
Similar to the path analysis study, predictive performance 
was measured in the form of mean LOO-IC estimates for 
each simulation condition. We found that the horseshoe pri-
ors possess the strongest predictive performance, especially 
for small samples (Table 6).

Although the differences in LOO-IC estimates may not 
appear large, any gain in predictive performance (i.e., lower 
LOO-IC) for a given model is an improvement over competing 
models. All the regularization priors used in this simulation 
study slightly out-preformed blavaan default non-informative 
priors, especially for small samples, we observe the greatest 
gains in predictive performance with the horseshoe priors. We 
did not observe much difference between the two horseshoe 
priors, in fact, the original horseshoe possessed the best LOO- 
IC estimate for our smallest sample size condition.

Figure 7. Mean parameter estimates for the given path model in the simulation study for each sample size and prior distribution.

Table 4. Mean LOO-IC estimates for each regularization method.

n

30 100 500 3,000

blavaan default 354.59 1,128.81 5,567.31 33,305.03
Ridge 353.79 1,128.58 5,567.29 33,307.31
Lasso 352.50 1,128.04 5,567.91 33,307.38
Horseshoe 348.75 1,128.67 5,566.76 33,301.90
Regularized horseshoe (p0 ¼ 3) 348.83 1,129.17 5,567.77 33,301.73

Table 5. LOO-IC mean estimates for varying choices of p0 with the regularized 
horseshoe.

n

p0 30 100 500 3,000

1 348.73 1,128.94 5,565.76 33,305.34
3 348.83 1,129.17 5,567.77 33,301.73
6 348.70 1,129.16 5,566.02 33,305.36
10 348.65 1,129.23 5,567.04 33,309.99
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Alongside predictive performance, we also compared 
shrinkage across regularization priors and sample sizes. 
Parameter estimates for the population model were derived 
from NAEP cycles 2003–2017 in order to simulate a realistic 
model researchers may encounter in their own work. Mean 
parameter estimates for each regularization prior and sample 
size are compared to the population model in terms of 
shrinkage. Figure 9 visually depicts this shrinkage. Similarly 
to the path analysis simulation, we found that the horseshoe 
priors induced the greatest amount of shrinkage, particularly 
when the sample is small. This effect is most notable with the 
two larger parameters “totrevdiff” and “nslplunchdiff.” While 
the ridge and lasso also shrink parameters closer to zero, 
shrinkage is more pronounced with the two horseshoe priors 
for small samples. We did not observe a noticeable difference 
in terms of shrinkage between the two horseshoe priors.

6. Discussion

The aim of this paper was to assess the performance of the 
original horseshoe prior and the recently developed regular-
ized horseshoe prior in the context of path analysis and 
growth curve modeling. These two horseshoe priors were 
compared to each other and to the ridge and lasso priors in 
terms of the amount of sparsity induced by the priors and 
especially in terms of predictive performance as measured 
by leave-one-out cross-validation. Focusing on the regular-
ized horseshoe, we also examined in path analysis the 
impact on the variance term, s0, as a function of the num-
ber of assumed large coefficients in the model, p0. A further 
feature of this paper was in demonstrating how to imple-
ment these priors in blavaan.

Overall, our results showed that there is little difference 
between the original horseshoe prior and regularized horse-
shoe prior in terms of both the amount of sparsity induced 
in the parameters and predictive performance, but both pri-
ors perform noticeably better than the ridge and lasso priors 
in terms of sparsity and predictive performance. In addition, 
in the context of these models, the ridge and lasso priors 
did not perform noticeably better than the case of the non- 
informative priors in which no sparsity was induced. These 
findings were true for both the path analysis and the growth 

Figure 8. Mean parameter estimates for the given path model in the simulation study for the regularized horseshoe prior with varying choices of p0 across sample 
sizes.

Table 6. Mean LOO-IC estimates for each regularization method in the 
growth curve modeling simulation study.

n

50 100 500 1,000
blavaan default 1,537.96 3,051.71 15,153.97 30,286.84
Ridge 1,537.64 3,051.65 15,153.92 30,287.02
Lasso 1,537.20 3,051.35 15,153.83 30,286.47
Horseshoe 1,535.48 3,049.88 15,153.52 30,286.82
Regularized horseshoe (p0 ¼ 1) 1,535.66 3,050.02 15,153.73 30,286.74
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curve model studies. Our results are in line with previous 
findings demonstrating that horseshoe regularization gener-
ally provides stronger predictive performance than standard 
methods of regularization like the ridge or lasso in other 
contexts such as linear and logistic regression as well as 
dynamic social network analysis (Carvalho et al., 2009, 
2010a; Karimova et al., 2023; Piironen & Vehtari, 2017). 
Our paper adds to this literature by examining predictive 
performance in terms of leave-one-out cross-validation— 
arguably the best scoring rule for true predictive 
performance.

The present study also assessed the impact of various 
choices of p0 on both parameter shrinkage and predictive 
performance for the regularized horseshoe prior in the con-
text of path analysis. We found the choice of p0, at least 
with respect to the model used in this study, to be inconse-
quential in terms of predictive performance. This finding 
suggests that the misspecification of this value will not 
impact predictive accuracy. These results fall in line with 
previous research on this parameter choice in other statis-
tical contexts such as linear and logistic regression (Piironen 
& Vehtari, 2017; van Erp et al., 2019).

It should be noted that selecting a single model for the 
purposes of prediction, even one that has been regularized, 

is not optimal, and instead many scholars have advocated 
for some form of model combination. Methods such as 
Bayesian model averaging (see, e.g., Clyde & George, 2004; 
Draper, 1995, 2013; Hoeting et al., 1999; Leamer, 1978; 
Raftery, 1995) and Bayesian stacking (Yao et al., 2018) have 
been shown to be better suited for the purposes of predic-
tion, but those methods are not the focus of this paper. For 
an overview of these methods with applications education, 
see Kaplan (2021), and for a specific extension and applica-
tion to path analysis, see Kaplan and Lee (2015).

In conclusion, as Bayesian methods are becoming 
increasingly feasible for researchers to implement in their 
own analyses, and also be extended to more complex mod-
els such as structural equation models (Depaoli, 2021; 
Depaoli et al., 2023); works such as this paper seek to evalu-
ate the tools available for researchers to use. Our overall 
conclusion is that the horseshoe priors perform at least as 
well, if not better than the ridge and lasso priors in terms of 
predictive performance, and much better in terms of induc-
ing sparsity. However, in any given application it may be 
reasonable to assess a range of regularization priors in terms 
of sparsity and predictive performance and choose the one 
that provides the best performance. Regardless, this paper, 
and the work of others, suggest that if the goal is to induce 

Figure 9. Mean parameter estimates for the given growth curve model in the simulation study. Time-invariant predictors are simulated as the difference between 
2017 and 2003 state-level full-time equivalent teachers (ftediff), the difference between 2017 and 2003 pupil-to-teacher ratio (ptrtiodiff), the difference between 
2015 and 2003 total revenue, (totrevdiff) and the difference in the 2017 and 2003 percentage of NSLP-eligible students (nslplunchdiff).

14 HARRA AND KAPLAN



sparsity in structural equation models while achieving good 
predictive performance, the horseshoe priors are clearly a 
reasonable choice.
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Appendix A. 

Path Analysis

library(lavaan) 

library(blavaan) 

library(runjags) 

library(rjags) 

#default BSEM 
pathmodel_default <- ’ 

READING�MEMOþELABþCSTRAT 

MEMO�ESCSþGENDERþIMMIGR 

ELAB�ESCSþGENDERþIMMIGR 

CSTRAT�ESCSþGENDERþIMMIGR 

’ 

fit_default <- bsem(pathmodel_default, data-

¼pisa1, n.chains ¼ 4, sample ¼ 10,000, 

adapt ¼ 5,000, burnin ¼ 5,000, target¼"jags", 

seed¼seed.list) 

## BLAVAAN CODE FOR RIDGE PRIOR 
pathmodel_ridge <- ’ 

READING�prior("dnorm(0,1)")�MEMO þ

prior("dnorm(0,1)")�ELAB þ

prior("dnorm(0,1)")�CSTRAT 

MEMO�prior("dnorm(0,1)")�ESCS þ

prior("dnorm(0,1)")�GENDER þ

prior("dnorm(0,1)")�IMMIGR 

ELAB�prior("dnorm(0,1)")�ESCS þ

prior("dnorm(0,1)")�GENDER þ

prior("dnorm(0,1)")�IMMIGR 

CSTRAT�prior("dnorm(0,1)")�ESCS þ

prior("dnorm(0,1)")�GENDER þ

prior("dnorm(0,1)")�IMMIGR 

’ 

fit_ridge <- bsem(pathmodel_ridge, data¼pisa1, 

n.chains ¼ 4, sample ¼ 10,000, 

adapt ¼ 5,000, burnin ¼ 5,000, target ¼"jags", 

seed¼seed.list) 

## BLAVAAN CODE FOR LASSO PRIOR 
pathmodel_lasso <- ’ 

READING�prior("ddexp(0,1)")�MEMO þ

prior("ddexp(0,1)")�ELAB þ

prior("ddexp(0,1)")�CSTRAT 

MEMO�prior("ddexp(0,1)")�ESCS þ

prior("ddexp(0,1)")�GENDER þ

prior("ddexp(0,1)")�IMMIGR 

ELAB�prior("ddexp(0,1)")�ESCS þ

prior("ddexp(0,1)")�GENDER þ

prior("ddexp(0,1)")�IMMIGR 

CSTRAT�prior("ddexp(0,1)")�ESCS þ

prior("ddexp(0,1)")�GENDER þ

prior("ddexp(0,1)")�IMMIGR 

’ 

fit_lasso <- bsem(pathmodel_lasso, data¼pisa1, 

n.chains ¼ 4, sample ¼ 10,000, 

adapt ¼ 5,000, burnin ¼ 5,000, target¼"jags", 

seed¼seed.list) 

## BLAVAAN CODE FOR HORSESHOE PRIOR 
pathmodel_horse <- ’ 

READING�prior("dnorm(0,tau�lambda_p)")�MEMO þ

prior("dnorm(0,tau�lambda_p)")�ELAB þ

prior("dnorm(0,tau�lambda_p)")�CSTRAT 

MEMO�prior("dnorm(0,tau�lambda_p)")�ESCS þ

prior("dnorm(0,tau�lambda_p)")�GENDER þ

prior("dnorm(0,tau�lambda_p)")�IMMIGR 

ELAB�prior("dnorm(0,tau�lambda_p)")�ESCS þ

prior("dnorm(0,tau�lambda_p)")�GENDER þ

prior("dnorm(0,tau�lambda_p)")�IMMIGR 

CSTRAT�prior("dnorm(0,tau�lambda_p)")�ESCS þ

prior("dnorm(0,tau�lambda_p)")�GENDER þ

prior("dnorm(0,tau�lambda_p)")�IMMIGR 

’ 

extra_horse <-’ lambda_p¼1/lambda_p_inv 

lambda_p_inv�dt(0,1,1)T(0,) # This indu-
ces the half-Cauchy prior. 
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tau ¼ 1/tau_inv 

tau_inv�dt(0,1,1)T(0,) 

’ 

fit_horse <- bsem(pathmodel_horse, data¼pisa1, 

n.chains ¼ 4, sample ¼ 10,000, 

adapt ¼ 5,000, burnin ¼ 5,000, target ¼

"jags", 

mcmcextra¼list(syntax¼extra_horse, 

monitor¼c("lambda_p", "tau")), 

seed¼seed.list) 

# BLAVAAN CODE FOR REGUARIZED HORSESHOE PRIOR 

(p_0¼1) 

pathmodel_reghorse1 <- ’ 

READING�prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�MEMO þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�ELAB þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�CSTRAT 

MEMO�prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�ESCS þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�GENDER þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�IMMIGR 

ELAB�prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�ESCS þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�GENDER þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�IMMIGR 

CSTRAT�prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�ESCS þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�GENDER þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�IMMIGR 

’ 

extra_reghorse <-’ c2¼1/c2_inv 

c2_inv�dgamma(2, 8) 

lambda�dt(0,1,1)T(0,) 

tau�dt(0,tau0,1)T(0,) 

tau_inv ¼ 1/tau 

tau0 ¼ (p0 / (12 - p0)) � (sigma / 

sqrt(1.0 � n)) 

n¼N 

p0¼1 

sigma ¼ 1 

lambda_tilde_inv ¼ 1/(sqrt(c2) 
� lambda / 

sqrt(c2þtaû2 � lambdâ2)) 

’ 

fit_reghorse1 <- bsem(pathmodel_reghorse1, 

data¼pisa1, 

n.chains ¼ 4, sample ¼ 10,000, 

adapt ¼ 5,000, burnin ¼ 5,000, 

target ¼ "jags", mcmcex-

tra¼list(syntax¼extra_ 

reghorse, 

monitor¼c("lambda_tilde_inv", 

"tau_inv")), seed¼seed.list)  

Growth Curve Modeling

library(lavaan) 

library(blavaan) 

# Default GCM 
BayesGCM <- ’ 

# intercept and slope with fixed coefficients 

int ¼� 1�Math03þ1�Math05þ1�Math07 

þ1�Math09þ1�Math11 þ

1�Math13þ1�Math15þ1�Math17 

slp ¼�

0�Math03þ2�Math05þ4�Math07þ6�Math09þ8�Math11 þ

10�Math13þ12�Math15þ14�Math17 

# time-varying covariates 
Math03 � Reading03 

Math05 � Reading05 

Math07 � Reading07 

Math09 � Reading09 

Math11 � Reading11 

Math13 � Reading13 

Math15 � Reading15 

Math17 � Reading17 

# time-invariant covariates 
int�prior("dnorm(0,.1)")�1 

slp�FTEDiffþPTRatioDiffþTOTREVDiffþNSLPLunch-

Diff 

’ 

fitMath <- bgrowth(BayesGCM, data¼NAEPdata.std, 

target ¼ "jags", n.chains ¼ 4, adapt ¼ 5,000, 

sample ¼ 20,000, seed¼seed.list, save.lvs¼T) 

# Ridge 
BayesGCMRidge <- ’ 

# intercept and slope with fixed coefficients 
int ¼�

1�Math03þ1�Math05þ1�Math07þ1�Math09þ1�Math11 þ

1�Math13þ1�Math15þ1�Math17 

slp ¼�

0�Math03þ2�Math05þ4�Math07þ6�Math09þ8�Math11 þ

10�Math13þ12�Math15þ14�Math17 

# time-varying covariates 
Math03 � Reading03 

Math05 � Reading05 

Math07 � Reading07 

Math09 � Reading09 

Math11 � Reading11 

Math13 � Reading13 

Math15 � Reading15 

Math17 � Reading17 

# time-invariant covariates 
int�prior("dnorm(0,.1)")�1 

slp�prior("dnorm(0,1)")�FTEDiff þ

prior("dnorm(0,1)")�PTRatioDiff þ

prior("dnorm(0,1)")�TOTREVDiff þ

prior("dnorm(0,1)")�NSLPLunchDiff 

’ 

fitMathRidge <- bgrowth(BayesGCMRidge, data¼

NAEPdata.std, 

target ¼ "jags", n.chains ¼ 4, adapt ¼ 5,000, 

sample ¼ 20,000, seed¼seed.list, save.lvs¼T) 

# Lasso 
BayesGCMLasso <- ’ 

# intercept and slope with fixed coefficients 
int ¼� 1�Math03þ1�Math05þ1�Math07þ1�Math09 

þ1�Math11 þ

1�Math13þ1�Math15þ1�Math17 

slp ¼� 0�Math03þ2�Math05þ4�Math07þ6�Math09 

þ8�Math11 þ

10�Math13þ12�Math15þ14�Math17 

# time-varying covariates 
Math03 � Reading03 

Math05 � Reading05 

Math07 � Reading07 

Math09 � Reading09 

Math11 � Reading11 

Math13 � Reading13 

Math15 � Reading15 

Math17 � Reading17 
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# time-invariant covariates 
int�prior("dnorm(0,.1)")�1 

slp�prior("ddexp(0,1)")�FTEDiff þ

prior("ddexp(0,1)")�PTRatioDiff þ

prior("ddexp(0,1)")�TOTREVDiff þ

prior("ddexp(0,1)")�NSLPLunchDiff 

’ 

fitMathLasso <- bgrowth(BayesGCMLasso, 

data¼NAEPdata.std, 

target ¼ "jags", n.chains ¼ 4, adapt ¼

5,000, 

sample ¼ 20,000, seed¼seed.list, 

save.lvs¼T) 

# Horseshoe 
BayesGCMHorseshoe <- ’ 

# intercept and slope with fixed coefficients 
int ¼� 1�Math03þ1�Math05þ1�Math07þ1�Math09 

þ1�Math11 þ

1�Math13þ1�Math15þ1�Math17 

slp ¼� 0�Math03þ2�Math05þ4�Math07þ6�Math09 

þ8�Math11 þ

10�Math13þ12�Math15þ14�Math17 

# time-varying covariates 
Math03 � Reading03 

Math05 � Reading05 

Math07 � Reading07 

Math09 � Reading09 

Math11 � Reading11 

Math13 � Reading13 

Math15 � Reading15 

Math17 � Reading17 

# time-invariant covariates 
int�prior("dnorm(0,.1)")�1 

slp�prior("dnorm(0,tau�lambda_p)")�FTEDiff þ

prior("dnorm(0,tau�lambda_p)")�PTRatioDiff þ

prior("dnorm(0,tau�lambda_p)")�TOTREVDiff þ

prior("dnorm(0,tau�lambda_p)")�NSLPLunchDiff 

’ 

extra_horse <-’ lambda_p¼1/lambda_p_inv 

lambda_p_inv�dt(0,1,1)T(0,) 

tau ¼ 1/tau_inv 

tau_inv�dt(0,1,1)T(0,) 

’ 

fitMathHorseshoe <- bgrowth(BayesGCMHorseshoe, 

data¼NAEPdata.std, 

target ¼ "jags", mcmcextra¼list(syntax¼extra_ 

horse, 

monitor¼c("lambda_p", "tau")), 

n.chains ¼ 4, adapt ¼ 5,000, 

sample ¼ 20,000, seed¼seed.list, save.lvs¼T) 

# Regularized Horseshoe 
BayesGCMRegHorse <- ’ 

# intercept and slope with fixed coefficients 
int ¼� 1�Math03þ1�Math05þ1�Math07þ1�Math09 

þ1�Math11 þ

1�Math13þ1�Math15þ1�Math17 

slp ¼� 0�Math03þ2�Math05þ4�Math07þ6�Math09 

þ8�Math11 þ

10�Math13þ12�Math15þ14�Math17 

# time-varying covariates 
Math03 � Reading03 

Math05 � Reading05 

Math07 � Reading07 

Math09 � Reading09 

Math11 � Reading11 

Math13 � Reading13 

Math15 � Reading15 

Math17 � Reading17 

# time-invariant covariates 
int�prior("dnorm(0,.1)")�1 

slp�prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�FTEDiff þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�PTRatioDiff þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�TOTREVDiff þ

prior("dnorm(0,tau_inv�lambda_tilde_ 

inv)")�NSLPLunchDiff 

’ 

N <- nrow(NAEPdata.std) 

extra_reghorse <- ’ 

c2¼1/c2_inv 

c2_inv�dgamma(2, 8) 

lambdatest�dt(0, 1, 1) T(0,) 

tau�dt(0, tau0, 1) T(0,) 

tau_inv ¼ 1/tau 

tau0 ¼ (p0 / (p - p0)) � (sigma / sqrt(1.0 � n)) 

n¼N 

p0¼1 

p¼5 

sigma ¼ 1 

lambda_tilde_inv ¼ 1 / (sqrt(c2) � lambdatest / 

sqrt(c2þtaû2 � lambdatest̂2)) 

’ 

fitMathRegHorse <- bgrowth(BayesGCMRegHorse, 

data¼NAEPdata.std, 

mcmcextra¼list(syntax¼extra_ 

reghorse, 

monitor¼c("lambda_tilde_inv", 

"tau_inv")), 

target ¼ "jags", n.chains ¼ 4, 

adapt ¼ 5,000, 

sample ¼ 20,000, seed¼seed.-

list, save.lvs¼T)  
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